タグ「分数」の検索結果

184ページ目:全4648問中1831問~1840問を表示)
神戸薬科大学 私立 神戸薬科大学 2014年 第1問
次の問いに答えよ.

(1)$4$次式$x^2+(x^2-1)^2$を複素数の範囲で因数分解すると$[ア]$である.
(2)不等式$x+2 \leqq |x^2-x-6|$を$x$について解くと$[イ]$である.
(3)関数$F(x)$が$F^\prime(x)=(3x+2)^2$,$F(0)=3$を満たすとき$F(x)=[ウ]$である.
(4)$2$次方程式$x^2-4x-2=0$の$2$つの解を$\alpha,\ \beta$とする.$a_n=\alpha^n-\beta^n$($n$は自然数)とおく.このとき,$\displaystyle \frac{a_{10}-2a_8}{a_9}$の値を求めると$[エ]$である.
北海道薬科大学 私立 北海道薬科大学 2014年 第3問
円$(x-2)^2+(y-3)^2=9$と放物線$y=x^2-4x+a+4$($a$は定数)は,$2$つの点で接している.

(1)$a$の値は$\displaystyle \frac{[アイウ]}{[エ]}$である.
(2)接点の座標は$\displaystyle \left( [オ] \pm \frac{\sqrt{[カキ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right)$であり,$2$つの接線の方程式は$y=\pm \sqrt{[サシ]}(x-[ス])+[セソタ]$である(複号同順).
(3)$(2)$で得られた$2$つの接線の交点の座標は$([チ],\ [ツテト])$である.
北海道薬科大学 私立 北海道薬科大学 2014年 第4問
$3$次関数$f(x)=x^3-3x^2-3ax$($a$は実数)が$x=\alpha$で極大値,$x=\beta$で極小値($\alpha,\ \beta$は実数)をとるとき,次の設問に答えよ.

(1)$a$の値の範囲は$a>[アイ]$である.
(2)$\alpha-\beta=[ウエ] \sqrt{a+[オ]}$である.
(3)$f(x)$の極大値と極小値の差が$\displaystyle \frac{1}{2}$のとき,$a$の値は$\displaystyle \frac{[カキ]}{[ク]}$である.
千葉工業大学 私立 千葉工業大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle x<\frac{\sqrt{3}}{1-\sqrt{3}}$をみたす最大の整数$x$は$[アイ]$である.
(2)等式$\displaystyle \frac{x+5}{x^2+x-2}=\frac{a}{x-1}+\frac{b}{x+2}$が$x$についての恒等式であるとき,$a=[ウ]$,$b=[エオ]$である.
(3)点$(-4,\ a)$と直線$3x+4y-1=0$との距離が$1$であるとき,$a=[カ]$または$\displaystyle \frac{[キ]}{[ク]}$である.
(4)$\displaystyle \left( x-\frac{2}{3} \right)^9$の展開式において,$x^8$の係数は$[ケコ]$であり,$x^7$の係数は$[サシ]$である.
(5)$\overrightarrow{a}=(3,\ t+1,\ 1)$と$\displaystyle \overrightarrow{b}=\left( 2,\ -3,\ \frac{3}{2}t \right)$が垂直であるとき,$t=[ス]$である.
(6)$\displaystyle (5^{\frac{1}{3}}-5^{-\frac{1}{3}})(5^{\frac{2}{3}}+1+5^{-\frac{2}{3}})=\frac{[セソ]}{[タ]}$である.
(7)$\log_{10}2=p$とおくと,$\log_{10}5=[チ]-p$であり,$\displaystyle \log_4 500=\frac{[ツ]-p}{[テ]p}$である.
(8)$\displaystyle \int_{-1}^2 (-x^2+3 |x|) \, dx=\frac{[ト]}{[ナ]}$である.
千葉工業大学 私立 千葉工業大学 2014年 第2問
次の各問に答えよ.

(1)$0 \leqq \theta \leqq \pi$とする.$F=2 \sin \theta (\sin \theta-\sqrt{3} \cos \theta)$は
\[ \begin{array}{rcl}
F &=& [ア]-\sqrt{3} \sin 2\theta-\cos 2\theta \\
&=& [ア]-[イ] \sin \left( 2\theta+\frac{[ウ]}{[エ]} \pi \right)
\end{array} \]
と変形できる.ここで,$\displaystyle 0 \leqq \frac{[ウ]}{[エ]} \pi <2\pi$とする.$F$は$\displaystyle \theta=\frac{[オ]}{[カ]} \pi$のとき,最大値$[キ]$をとる.
(2)$a$を正の定数とし,$f(x)=2x^3-ax^2+27$とする.$f(x)$の導関数は
\[ f^\prime(x)=[ク]x^2-[ケ]ax \]
であり,$f(x)$は$\displaystyle x=\frac{[コ]}{[サ]}a$のとき,極小値$\displaystyle 27-\frac{[シ]}{[スセ]} a^{[ソ]}$をとる.どのような正の数$x$に対しても不等式$2x^3+27>ax^2$が成り立つような$a$の値の範囲は$0<a<[タ]$である.
愛知学院大学 私立 愛知学院大学 2014年 第1問
実数$p,\ q$が$p+q=\sqrt{6}$,$p-q=\sqrt{5}$を満たすとき,
\[ p^2+q^2=[ア],\quad pq=[イ] \]
である.また$p$の整数部分を$a$,小数部分を$b$とすると,
\[ a=[ウ],\quad \frac{1}{b+\displaystyle\frac{5}{2}}=[エ] \]
である.分母は必ず有理化すること.
愛知学院大学 私立 愛知学院大学 2014年 第3問
$\displaystyle f(x)=\sqrt{3} \cos \left( 2x-\frac{1}{2} \pi \right)$,$\displaystyle g(x)=\sin \left( 2x-\frac{1}{2} \pi \right)$とする.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$f(x)+g(x)$の最大値とそのときの$x$の値を求めなさい.
(2)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$f(x)g(x)$の最小値とそのときの$x$の値を求めなさい.
金沢工業大学 私立 金沢工業大学 2014年 第1問
次の問いに答えよ.

(1)$p=(\sqrt{3}+\sqrt{5})^2$,$q=(\sqrt{3}-\sqrt{5})^2$のとき$p+q=[アイ]$,$pq=[ウ]$,$p^2+q^2=[エオカ]$である.

(2)連立不等式$\left\{ \begin{array}{r}
|2x-9| \leqq 5 \\
9-2x \leqq 4
\end{array} \right.$の解は$\displaystyle \frac{[キ]}{[ク]} \leqq x \leqq [ケ]$である.

(3)$(2x-1)^5(y-2)^4$の展開式における$x^2y^3$の項の係数は$[コサシ]$である.
(4)${0}^\circ<\theta<{90}^\circ$で,$\displaystyle \tan \theta=\frac{4}{3}$のとき,
\[ \frac{\sin (\theta+{90}^\circ)+\tan (\theta+{90}^\circ)}{\sin ({180}^\circ-\theta)+\tan ({180}^\circ-\theta)}=\frac{[ス]}{[セソ]} \]
である.
(5)$p,\ q$を定数とし,$q<0$とする.$2$次関数$y=px^2+qx+2q$のグラフの頂点の座標が$(-4q,\ -40)$のとき,$\displaystyle p=\frac{[タ]}{[チ]}$,$q=[ツテ]$である.
(6)赤玉が$5$個,白玉が$3$個入っている袋がある.この袋の中から玉を同時に$2$個取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[ト]}{[ナニ]}$である.
(7)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$個のさいころを同時に投げて,それぞれの出る目を$a,\ b,\ c$とする.このとき,積$abc$が奇数になる組$(a,\ b,\ c)$は$[ヌネ]$組あり,偶数になる組$(a,\ b,\ c)$は$[ノハヒ]$組ある.
(8)$\triangle \mathrm{ABC}$において,$\mathrm{AP}:\mathrm{PB}=\mathrm{AQ}:\mathrm{QC}=1:3$となるように点$\mathrm{P}$を辺$\mathrm{AB}$上に,点$\mathrm{Q}$を辺$\mathrm{AC}$上にとる.線分$\mathrm{BQ}$と線分$\mathrm{CP}$の交点を$\mathrm{R}$とすると,$\displaystyle \triangle \mathrm{PQR}=\frac{[フ]}{[ヘホ]} \triangle \mathrm{BCR}$である.
甲南大学 私立 甲南大学 2014年 第1問
以下の問いに答えよ.

(1)$a,\ b,\ c,\ d,\ x,\ y$は$0$でない実数,$i$は虚数単位とする.
\[ \left( x+\frac{1}{yi} \right) \cdot \frac{1}{\displaystyle\frac{1}{a}+bi}=-\frac{d}{c}i \]
の関係があるとき,$x,\ y$を$a,\ b,\ c,\ d$を用いて表せ.
(2)$t$は$t>-1$を満たす定数とする.$-1 \leqq x \leqq t$における関数$f(x)=2x^2-4x+1$の最大値と最小値の差が$8$であるような$t$の値の範囲を求めよ.
神戸薬科大学 私立 神戸薬科大学 2014年 第3問
次の問いに答えよ.

(1)関数$y=2^x$のグラフを$y$軸で対称移動させたのち,$x$軸方向に$-2$だけ平行移動させたグラフの方程式は$[キ]$である.また,$y=2^x$のグラフを$y=x$について対称に移したグラフの方程式を$y=f(x)$の形で表すと$[ク]$である.
(2)不等式$\displaystyle \left( \frac{1}{2} \right)^{7x^2-8x+6}<\left( \frac{1}{2} \right)^{-8x^2+14x-2}$を$x$について解くと$[ケ]$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。