タグ「分数」の検索結果

17ページ目:全4648問中161問~170問を表示)
千葉大学 国立 千葉大学 2016年 第4問
$\displaystyle z=\cos \frac{2\pi}{7}+i \sin \frac{2\pi}{7}$($i$は虚数単位)とおく.

(1)$z+z^2+z^3+z^4+z^5+z^6$を求めよ.
(2)$\alpha=z+z^2+z^4$とするとき,$\alpha+\overline{\alpha}$,$\alpha \overline{\alpha}$および$\alpha$を求めよ.ただし,$\overline{\alpha}$は$\alpha$の共役複素数である.
(3)$(1-z)(1-z^2)(1-z^3)(1-z^4)(1-z^5)(1-z^6)$を求めよ.
千葉大学 国立 千葉大学 2016年 第5問
$p$を$2$でない素数とし,自然数$m,\ n$は
\[ (m+n \sqrt{p})(m-n \sqrt{p})=1 \]
を満たすとする.

(1)互いに素な自然数の組$(x,\ y)$で
\[ m+n \sqrt{p}=\frac{x+y \sqrt{p}}{x-y \sqrt{p}} \]
を満たすものが存在することを示せ.
(2)$x$は$(1)$の条件を満たす自然数とする.$x$が$p$で割り切れないことと,$m$を$p$で割った余りが$1$であることが,同値であることを示せ.
千葉大学 国立 千葉大学 2016年 第3問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第3問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(0,\ 1)$,$\mathrm{C}(1,\ 1)$,$\mathrm{D}(1,\ 0)$,$\displaystyle \mathrm{E} \left( 0,\ \frac{2}{3} \right)$がある.点$\mathrm{E}$と点$\mathrm{P}_1(s,\ 1) (0<s<1)$を通る直線を$\ell_1$とする.直線$y=1$に関して$\ell_1$と対称な直線を$\ell_2$とし,$\ell_2$と直線$x=1$の交点を$\mathrm{P}_2$とする.さらに,直線$x=1$に関して$\ell_2$と対称な直線$\ell_3$は$x$軸と線分$\mathrm{AD}$上で交わるとし,その交点を$\mathrm{P}_3$とする.

(1)直線$\ell_2$が点$\mathrm{D}$を通るときの$s$の値を求めよ.
(2)線分$\mathrm{DP}_3$の長さを$s$を用いて表せ.
(3)$\mathrm{EP}_1+\mathrm{P}_1 \mathrm{P}_2+\mathrm{P}_2 \mathrm{P}_3$の最大値と最小値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第3問
関数$f(x)=\langle\!\langle x \rangle\!\rangle-2 \langle\!\langle x-1 \rangle\!\rangle+\langle\!\langle x-2 \rangle\!\rangle$を考える.

ここで,実数$u$に対して$\displaystyle \langle\!\langle u \rangle\!\rangle=\frac{u+|u|}{2}$とする.このとき以下の各問いに答えよ.

(1)$f(x)$のグラフをかけ.

(2)$\displaystyle g(x)=\int_0^1 f(x-t) \, dt$とおくとき,$g(x)$の最大値を求めよ.

(3)$(2)$の$g(x)$に対して,$\displaystyle p(s)=\int_0^3 (x-s)^2 g(x) \, dx$とおくとき,$p(s)$の最小値を求めよ.
千葉大学 国立 千葉大学 2016年 第4問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。