タグ「分散」の検索結果

1ページ目:全24問中1問~10問を表示)
鹿児島大学 国立 鹿児島大学 2016年 第6問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
広島大学 国立 広島大学 2016年 第5問
$n$を$2$以上の自然数とする.次の問いに答えよ.

(1)変量$x$のデータの値が$x_1,\ x_2,\ \cdots,\ x_n$であるとし,
\[ f(a)=\frac{1}{n} \sum_{k=1}^n (x_k-a)^2 \]
とする.$f(a)$を最小にする$a$は$x_1,\ x_2,\ \cdots,\ x_n$の平均値で,そのときの最小値は$x_1,\ x_2,\ \cdots,\ x_n$の分散であることを示せ.
(2)$c$を定数として,変量$y,\ z$の$k$番目のデータの値が

$y_k=k\phantom{c} \quad (k=1,\ 2,\ \cdots,\ n)$
$z_k=ck \quad (k=1,\ 2,\ \cdots,\ n)$

であるとする.このとき$y_1,\ y_2,\ \cdots,\ y_n$の分散が$z_1,\ z_2,\ \cdots,\ z_n$の分散より大きくなるための$c$の必要十分条件を求めよ.
(3)変量$x$のデータの値が$x_1,\ x_2,\ \cdots,\ x_n$であるとし,その平均値を$\overline{x}$とする.新たにデータを得たとし,その値を$x_{n+1}$とする.$x_1,\ x_2,\ \cdots,\ x_n,\ x_{n+1}$の平均値を$x_{n+1},\ \overline{x}$および$n$を用いて表せ.
(4)次の$40$個のデータの平均値,分散,中央値を計算すると,それぞれ,ちょうど$40,\ 670,\ 35$であった.

\begin{tabular}{|rrrrrrrrrr|}
\hline
$120$ & $10$ & $60$ & $70$ & $30$ & $20$ & $20$ & $30$ & $20$ & $60$ \\
$40$ & $50$ & $40$ & $10$ & $30$ & $40$ & $40$ & $30$ & $20$ & $70$ \\
$100$ & $20$ & $20$ & $40$ & $40$ & $60$ & $70$ & $20$ & $50$ & $10$ \\
$30$ & $10$ & $50$ & $80$ & $10$ & $30$ & $70$ & $10$ & $60$ & $10$ \\ \hline
\end{tabular}


新たにデータを得たとし,その値が$40$であった.このとき,$41$個のすべてのデータの平均値,分散,中央値を求めよ.ただし,得られた値が整数でない場合は,小数第$1$位を四捨五入せよ.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
琉球大学 国立 琉球大学 2016年 第1問
次の問いに答えよ.

(1)整式$P(x)$は,$\displaystyle P \left( \frac{5}{3} \right)=\frac{8}{3}$と$\displaystyle P \left( -\frac{7}{2} \right)=-\frac{5}{2}$を満たす.$P(x)$を$6x^2+11x-35$で割った余りを求めよ.
(2)座標空間内の$3$点$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{B}(0,\ 3,\ 0)$,$\mathrm{C}(1,\ s,\ t)$を頂点とする三角形$\mathrm{ABC}$の重心を$\mathrm{G}$,原点を$\mathrm{O}$とする.$\mathrm{OG} \perp \mathrm{AG}$,$\mathrm{OG} \perp \mathrm{AB}$となるときの$s$と$t$の値を求めよ.
(3)変量$x$の値が$x_1,\ x_2,\ x_3$のとき,その平均値を$\overline{x}$とする.分散$s^2$を
\[ \frac{1}{3}\{(x_1-\overline{x})^2+(x_2-\overline{x})^2+(x_3-\overline{x})^2 \} \]
で定義するとき,$s^2=\overline{x^2}-(\overline{x})^2$となることを示せ.ただし$\overline{x^2}$は${x_1}^2,\ {x_2}^2,\ {x_3}^2$の平均値を表す.
山梨大学 国立 山梨大学 2016年 第1問
次の問いに答えよ.

(1)$\angle \mathrm{A}={90}^\circ$の直角二等辺三角形$\mathrm{ABC}$において,$3$辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$上の点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.線分$\mathrm{AQ}$,$\mathrm{BR}$,$\mathrm{CP}$は$1$点で交わり,$\mathrm{AP}:\mathrm{PB}=3:1$かつ$\angle \mathrm{ARB}={60}^\circ$とする.このとき,$\displaystyle \frac{\mathrm{BQ}}{\mathrm{QC}}$を求めよ.
(2)複素数$z$の方程式$z^4=-8-8 \sqrt{3}i$の解をすべて求めよ.
(3)初項$a_1=3$,公差$4$の等差数列$\{a_n\}$の一般項を求めよ.また,$a_1,\ a_2,\ \cdots,\ a_n$の$n$個の値からなるデータの平均値$m$および分散$s^2$を,$n$を用いた式で表せ.
神戸薬科大学 私立 神戸薬科大学 2016年 第7問
次の$5$つのデータがあった.
\[ 5,\ 2,\ 8,\ 10,\ 5 \]

(1)このとき,第$1$四分位数$=[ヌ]$,中央値$=[ネ]$である.
(2)分散を求めると$[ノ]$である.
南山大学 私立 南山大学 2016年 第1問
$[ ]$の中に答を入れよ.

(1)$2$つの関数$f(x)=|x|$,$g(x)=ax+a^2+3a+1$がある.$g(0)>f(0)$となるとき,$a$のとりうる値の範囲は$[ア]$である.また,$y=f(x)$のグラフと$y=g(x)$のグラフが$2$つの交点をもつとき,$a$のとりうる値の範囲は$[イ]$である.
(2)次のデータは,$5$個の乾電池について,ある実験で用いたときの持続時間$x$を調べたものである.
\[ 103, 93, 98, 88, 108 \text{(時間)} \]
$x$の平均値は$[ウ]$時間であり,$x$の分散を求めると$[エ]$である.
(3)$a_1=99$,$a_{n+1}=2a_n-100 (n=1,\ 2,\ \cdots)$で定義される数列$\{a_n\}$について,一般項$a_n$を$n$の式で表すと$a_n=[オ]$であり,$a_n<0$を満たす最小の自然数$n$の値を求めると$n=[カ]$である.
(4)$x$と$y$は$0<x<y$,$\log_2 x+2 \log_4 y=1$,$(\log_2 x)(\log_4 y)=-6$を満たす.$s=\log_2 x$,$t=\log_2 y$とおき$s+t$と$st$の値を求めると$(s+t,\ st)=[キ]$である.また,$x$と$y$の値を求めると$(x,\ y)=[ク]$である.
成城大学 私立 成城大学 2016年 第3問
$2$つの変量$x,\ y$についてのデータが,$\mathrm{A}$から$\mathrm{J}$までの$10$個の$x,\ y$の組として与えられているとする.


\begin{tabular}{|c||c|c|c|c|c|c|c|c|c|c|}
\hline
& $\mathrm{A}$ & $\mathrm{B}$ & $\mathrm{C}$ & $\mathrm{D}$ & $\mathrm{E}$ & $\mathrm{F}$ & $\mathrm{G}$ & $\mathrm{H}$ & $\mathrm{I}$ & $\mathrm{J}$ \\ \hline
$x$ & $1$ & $2$ & $2$ & $1$ & $1$ & $3$ & $3$ & $1$ & $3$ & $3$ \\ \hline
$y$ & $4$ & $1$ & $1$ & $1$ & $4$ & $4$ & $4$ & $1$ & $1$ & $1$ \\ \hline
\end{tabular}



(1)$2$つの変量$x,\ y$のデータの最頻値をそれぞれ求めよ.
(2)$2$つの変量$x,\ y$のデータの平均値をそれぞれ求めよ.
(3)$2$つの変量$x,\ y$のデータの第$1$四分位数,第$2$四分位数,第$3$四分位数をそれぞれ求めよ.
(4)$2$つの変量$x,\ y$のデータの分散をそれぞれ求めよ.
(5)$2$つの変量$x,\ y$の相関係数を$r$で表すとき,$r^2$の値を求めよ.
広島工業大学 私立 広島工業大学 2016年 第8問
$a$を定数とする.$2$つの変量$(x,\ y)$が右の$4$つの観測値をとった.このとき,次の問いに答えよ.
\begin{mawarikomi}{40mm}{
\begin{tabular}{|c|c|c|c|c|}
\hline
$x$ & $0$ & $1$ & $a$ & $a+1$ \\ \hline
$y$ & $0$ & $0$ & $1$ & $1$ \\ \hline
\end{tabular}
}

(1)$x,\ y$の平均値$\overline{x},\ \overline{y}$をそれぞれ求めよ.
(2)$x,\ y$の分散${s_x}^2,\ {s_y}^2$をそれぞれ求めよ.
(3)$x$と$ y$の共分散$s_{xy}$を求めよ.
(4)$x$と$y$の相関係数$r$を$a$を用いて表せ.

\end{mawarikomi}
スポンサーリンク

「分散」とは・・・

 まだこのタグの説明は執筆されていません。