タグ「円」の検索結果

4ページ目:全908問中31問~40問を表示)
大阪大学 国立 大阪大学 2016年 第5問
円上の$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$は反時計回りにこの順に並び,円周を$5$等分している.$5$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$を頂点とする正五角形を$\mathrm{R}_1$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CD}}=\overrightarrow{c}$とおき,$\overrightarrow{a}$の大きさを$x$とする.

(1)$\overrightarrow{\mathrm{AC}}$の大きさを$y$とするとき,$x^2=y(y-x)$がなりたつことを示せ.
(2)$\overrightarrow{\mathrm{BC}}$を$\overrightarrow{a},\ \overrightarrow{c}$を用いて表せ.
(3)$\mathrm{R}_1$の対角線の交点として得られる$\mathrm{R}_1$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_2$とする.$\mathrm{R}_2$の一辺の長さを$x$を用いて表せ.
(4)$n=1,\ 2,\ 3,\ \cdots$に対して,$\mathrm{R}_n$の対角線の交点として得られる$\mathrm{R}_n$の内部の$5$つの点を頂点とする正五角形を$\mathrm{R}_{n+1}$とし,$\mathrm{R}_n$の面積を$S_n$とする.
\[ \lim_{n \to \infty} \frac{1}{S_1} \sum_{k=1}^n (-1)^{k+1}S_k \]
を求めよ.
(図は省略)
琉球大学 国立 琉球大学 2016年 第1問
$i$を虚数単位とし,$\displaystyle z=\cos \frac{2\pi}{5}+i \sin \frac{2\pi}{5}$とおく.次の問いに答えよ.

(1)$z^5$および$z^4+z^3+z^2+z+1$の値を求めよ.
(2)$\displaystyle t=z+\frac{1}{z}$とおく.$t^2+t$の値を求めよ.
(3)$\displaystyle \cos \frac{2\pi}{5}$の値を求めよ.
(4)半径$1$の円に内接する正五角形の$1$辺の長さの$2$乗を求めよ.
長崎大学 国立 長崎大学 2016年 第1問
半径$1$の円に内接する正十二角形$D$がある.その面積を$S$とする.$D$の各辺の中点を順に結んで正十二角形$D_1$をつくる.さらに,$D_1$の各辺の中点を結んで正十二角形$D_2$をつくる.このように,$D_{n−1}$の各辺の中点を順に結んで正十二角形$D_n$をつくる($n \geqq 2$).$D_n$の面積を$S_n$とする.以下の問いに答えよ.

(1)$S$と$S_1$を求めよ.
(2)$S_n$を$n$の式で表せ($n \geqq 1$).
(3)$\displaystyle S_n \leqq \frac{1}{2}S$となる最小の整数$n$を求めよ.ただし,
\[ 1.89<\log_2(2+\sqrt{3})<1.9 \]
である.
宮崎大学 国立 宮崎大学 2016年 第5問
$k>0$,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上の原点$\mathrm{O}$,点$\mathrm{A}(0,\ 1)$に対し,第一象限の点$\mathrm{P}$を,$\angle \mathrm{AOP}=\theta$を満たすように円$D:x^2+y^2=1$上にとり,直線$\mathrm{OP}$と直線$x=k \theta$との交点を$\mathrm{Q}$とする.$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で動かすときの点$\mathrm{Q}$の軌跡を曲線$y=f(x)$とし,関数$\displaystyle y=g(x)=\frac{f(x)}{x}$で定める曲線を$C$とする.このとき,次の各問に答えよ.

(1)$r(\theta)=\mathrm{OQ}$とするとき,$\displaystyle \lim_{\theta \to +0} r(\theta)$の値を求めよ.
(2)点$\mathrm{Q}$がつねに円$D$の内部にあるための$k$の条件を求めよ.
(3)関数$g(x)$の増減と凹凸を調べ,曲線$C$の概形をかけ.
(4)曲線$C$と$x$軸および$2$直線$\displaystyle x=\frac{\pi}{4}k$,$\displaystyle x=\frac{\pi}{3}k$とで囲まれた図形を$x$軸のまわりに$1$回転させてできる立体の体積を,$k$を用いて表せ.
長崎大学 国立 長崎大学 2016年 第4問
楕円$\displaystyle x^2+\frac{y^2}{a^2}=1 (a>0)$と$y$軸の交点を$\mathrm{A}(0,\ a)$,$\mathrm{B}(0,\ -a)$とする.$\theta$が$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$の範囲を動くとき,点$\mathrm{P}(\cos \theta,\ a \sin \theta)$はこの楕円上を動く.以下の問いに答えよ.

(1)線分$\mathrm{AP}$の長さを$l$とする.$\displaystyle X=\sin \theta \left( -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2} \right)$のとき,$Y=l^2$となる関数を$Y=f(X)$とする.$f(X)$を$X$の式で表せ.
(2)$0<a<1$の場合.
$(1)$の関数$f(X)$の最大値を$a$を用いて表し,そのときの$X$の値を求めよ.
(3)$a=2$の場合.
$(1)$の関数$f(X)$の値が最大となるときの点$\mathrm{P}$を$\mathrm{P}_1$とする.$f(X)$の最大値と$\mathrm{P}_1$の座標を求めよ.また,点$\mathrm{A}(0,\ 2)$を中心とし点$\mathrm{P}_1$を通る円を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第1問
半径$1$の円に内接する正十二角形$D$がある.その面積を$S$とする.$D$の各辺の中点を順に結んで正十二角形$D_1$をつくる.さらに,$D_1$の各辺の中点を結んで正十二角形$D_2$をつくる.このように,$D_{n−1}$の各辺の中点を順に結んで正十二角形$D_n$をつくる($n \geqq 2$).$D_n$の面積を$S_n$とする.以下の問いに答えよ.

(1)$S$と$S_1$を求めよ.
(2)$S_n$を$n$の式で表せ($n \geqq 1$).
(3)$\displaystyle S_n \leqq \frac{1}{2}S$となる最小の整数$n$を求めよ.ただし,
\[ 1.89<\log_2(2+\sqrt{3})<1.9 \]
である.
秋田大学 国立 秋田大学 2016年 第3問
$b>0$,$a=2 \sqrt{3}b$とし,原点を$\mathrm{O}$とする座標平面上の楕円$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$を$E$とする.楕円$E$上の点$\mathrm{P}(x,\ y)$の媒介変数表示は$x=a \cos \theta$,$y=b \sin \theta (0 \leqq \theta<2\pi)$で与えられる.次の問いに答えよ.

(1)点$\mathrm{P}$で楕円$E$と共通の接線をもつ円を考える.このような円のうち,不等式$\displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} \geqq 1$の表す領域内にある円を$C$とする.円$C$の半径を$r(\theta)$とするとき,$C$の中心を$\theta$と$r(\theta)$を用いて表せ.
(2)$2d=11b$とし,$4$つの頂点が$(d,\ d)$,$(-d,\ d)$,$(-d,\ -d)$,$(d,\ -d)$である正方形$F$を考える.点$\mathrm{P}$が楕円$E$上を動くとき,$(1)$の円$C$の中心は正方形$F$の周上を動くとする.このとき,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$に対して,$C$の半径$r(\theta)$を求めよ.
(3)$(2)$の$r(\theta)$の$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$における最大値は$\displaystyle \frac{5 \sqrt{5}}{2}b$であることを示せ.
島根大学 国立 島根大学 2016年 第2問
次の問いに答えよ.

(1)$2$次方程式$t^2+5t+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2$の値を求めよ.
(2)$u,\ v$を実数とする.$2$次方程式$t^2-ut+v=0$が実数解をもつとき,点$(u,\ v)$の存在範囲を図示せよ.
(3)平面上の点$(a,\ b)$が原点を中心とする半径$1$の円の内部を動くとき,点$(a+b,\ ab)$の動いてできる領域を図示せよ.
島根大学 国立 島根大学 2016年 第3問
複素数平面上に点$\mathrm{O}(0)$,$\mathrm{P}(-1+\sqrt{3}i)$,$\mathrm{Q}(2)$と,これら$3$点を通る円$C$がある.ただし,$i$は虚数単位とする.このとき,次の問いに答えよ.

(1)複素数$-1+\sqrt{3}i$を極形式で表せ.ただし,偏角$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(2)$\angle \mathrm{OPQ}$の大きさを求めよ.
(3)円$C$と虚軸との交点のうち,$\mathrm{O}$でない点を$\mathrm{R}$とする.$\mathrm{R}$を表す複素数を求めよ.
(4)円$C$の中心を表す複素数を$c$とする.点$z$が円$C$上を動くとき,複素数$\displaystyle w=\frac{z-1}{z-c}$がえがく図形を図示せよ.
島根大学 国立 島根大学 2016年 第2問
次の問いに答えよ.

(1)$2$次方程式$t^2+5t+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2$の値を求めよ.
(2)$u,\ v$を実数とする.$2$次方程式$t^2-ut+v=0$が実数解をもつとき,点$(u,\ v)$の存在範囲を図示せよ.
(3)平面上の点$(a,\ b)$が原点を中心とする半径$1$の円の内部を動くとき,点$(a+b,\ ab)$の動いてできる領域を図示せよ.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。