タグ「円」の検索結果

11ページ目:全908問中101問~110問を表示)
広島経済大学 私立 広島経済大学 2016年 第4問
円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=8$,$\mathrm{BC}=5$,$\mathrm{CD}=3$,$\angle \mathrm{ABC}={60}^\circ$である.このとき,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)対角線$\mathrm{AC}$の長さは$[$31$]$である.
(2)辺$\mathrm{AD}$の長さは$[$32$]$である.

(3)円の半径は$\displaystyle \frac{[$33$] \sqrt{[$34$]}}{[$35$]}$である.

(4)四角形$\mathrm{ABCD}$の面積は$\displaystyle \frac{[$36$] \sqrt{[$37$]}}{[$38$]}$である.
東京薬科大学 私立 東京薬科大学 2016年 第1問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$x^2+5x+1=0$のとき,$\displaystyle x+\frac{1}{x}=[$*$ア]$であり,$\displaystyle x^2+\frac{1}{x^2}=[イウ]$である.

(2)$\displaystyle \frac{3}{2}\pi<\theta<2 \pi$かつ$\displaystyle \tan \theta=-\frac{12}{5}$のとき,$\displaystyle \cos \theta=\frac{[$*$エ]}{[オカ]}$,$\displaystyle \sin \theta=\frac{[$*$キク]}{[オカ]}$である.

(3)点$(4,\ 2)$を通り,傾きが$m$の直線$\ell$が,円$C:x^2+y^2=4$に接するとき,$\displaystyle m=[ケ]$,$\displaystyle \frac{[コ]}{[サ]}$である.

(4)容器$\mathrm{A}$には質量パーセント濃度$3 \, \%$の食塩水が$200 \, \mathrm{g}$,容器$\mathrm{B}$には質量パーセント濃度$10 \, \%$の食塩水が$300 \, \mathrm{g}$入っている.今,$\mathrm{A}$,$\mathrm{B}$それぞれから同量ずつ食塩水を取り出し,$\mathrm{A}$から取り出したものを$\mathrm{B}$へ,$\mathrm{B}$から取り出したものを$\mathrm{A}$へ入れたところ,$2$つの容器$\mathrm{A}$,$\mathrm{B}$内の食塩水の質量パーセント濃度が等しくなった.このとき,容器$\mathrm{A}$,$\mathrm{B}$それぞれから取り出した食塩水の量は$[シスセ] \, \mathrm{g}$である.ただし,質量パーセント濃度とは溶液(本問の場合,食塩水)の質量に対する溶質(本問の場合,食塩)の質量の割合を百分率($\%$)で表したものである.
大阪工業大学 私立 大阪工業大学 2016年 第2問
次の空所を埋めよ.

(1)数列$\{a_n\}$が$a_1=2$,$a_{n+1}=3a_n+2^n (n=1,\ 2,\ 3,\ \cdots)$を満たすとき,$a_2=[ア]$,$a_3=[イ]$である.また,漸化式を変形すると,$a_{n+1}+2^{n+1}=3(a_n+[ウ])$となることから,数列$\{a_n\}$の一般項は,$a_n=[エ]$である.
(2)$t>0$とし,$k$を実数とする.原点を$\mathrm{O}$とする座標平面上の$2$点$\displaystyle \mathrm{A} \left( \frac{\sqrt{2}}{2},\ \frac{\sqrt{2}}{2} \right)$,$\mathrm{B}(t,\ -t)$について,$\mathrm{AB}=2 \sqrt{2}$であるとする.このとき,$t=[オ]$である.さらに,直線$\mathrm{OA}$上の点$\mathrm{P}(k,\ k)$を中心とする円$C$が$2$点$\mathrm{A}$,$\mathrm{B}$を通るとき,$k=[カ]$であり,円$C$の半径$r$は,$r=[キ]$である.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第1問
以下の$[ ]$にあてはまる適切な数を記入しなさい.

(1)どの位にも$0$を使わずに,でたらめに$4$桁の整数を作る.このとき,どの位の数字も異なる確率は$[ ]$である.
(2)円に内接する正三角形の面積が$27 \sqrt{3}$のとき,この円の半径は$[ ]$である.
(3)$\displaystyle \lim_{x \to -\infty} \left( 4x+3+\sqrt{16x^2+9} \right)=[ ]$である.

(4)$\displaystyle \frac{\sin {55}^\circ+\sin {175}^\circ+\sin {65}^\circ+\sin {185}^\circ}{\sin {50}^\circ+\cos {50}^\circ}$の値を求めると,$[ ]$である.

(5)$1$辺の長さが$1$の正方形$\mathrm{ABCD}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,辺$\mathrm{BC}$を$3:1$に外分する点を$\mathrm{N}$とする.線分$\mathrm{MN}$と線分$\mathrm{BD}$の交点を$\mathrm{L}$とするとき,線分$\mathrm{AL}$の長さは$[ ]$である.
天使大学 私立 天使大学 2016年 第5問
次の問いに答えなさい.

(1)三角形$\mathrm{ABC}$において$\mathrm{BC}=10$,$\mathrm{CA}=2 \sqrt{5}$であり,この三角形は円$\mathrm{O}$に内接している.また点$\mathrm{A}$における円$\mathrm{O}$の接線と直線$\mathrm{BC}$との交点を$\mathrm{D}$とすると$\displaystyle \mathrm{AD}=\frac{20}{3}$である.次の問いに答えなさい.

(i) $\mathrm{DC}=\frac{\mkakko{$\mathrm{a}$} \mkakko{$\mathrm{b}$}}{\mkakko{$\mathrm{c}$}}$,$\mathrm{AB}=\mkakko{$\mathrm{d}$} \sqrt{\mkakko{$\mathrm{e}$}}$である.
(ii) 円$\mathrm{O}$の半径は$\mkakko{$\mathrm{f}$}$であり,$\triangle \mathrm{ABD}$の面積は$\displaystyle \frac{\mkakko{$\mathrm{g}$} \mkakko{$\mathrm{h}$}}{\mkakko{$\mathrm{i}$}}$である.

(2)実数$x$に対して$3$つの条件$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$がある.ただし$a$は定数である.

$\mathrm{P}:2x-5 \geqq x+6$
$\mathrm{Q}:x^2-(2a-1)x+a^2-a-12 \leqq 0$
$\mathrm{R}:13 \leqq x \leqq 16$

次の問いに答えなさい.

(i) $\mathrm{Q}$が$\mathrm{P}$であるための十分条件となるとき$\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$} \leqq a$であり,$\mathrm{Q}$が$\mathrm{R}$であるための必要条件となるとき$\mkakko{$\mathrm{l}$} \mkakko{$\mathrm{m}$} \leqq a \leqq \mkakko{$\mathrm{n}$} \mkakko{$\mathrm{o}$}$である.
(ii) $(ⅰ)$より,$\mathrm{Q}$が$\mathrm{P}$であるための十分条件で,かつ$\mathrm{Q}$が$\mathrm{R}$であるための必要条件となることを満たす定数$a$のうち整数は,小さい順に$\mkakko{$\mathrm{p}$} \mkakko{$\mathrm{q}$}$,$\mkakko{$\mathrm{r}$} \mkakko{$\mathrm{s}$}$,$\mkakko{$\mathrm{t}$} \mkakko{$\mathrm{u}$}$である.
近畿大学 私立 近畿大学 2016年 第1問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$1:3$に内分する点を$\mathrm{E}$とする.四角形$\mathrm{DBCE}$は円$\mathrm{O}$に内接しており,$\mathrm{BC}=6$,$\mathrm{AD}=\mathrm{DE}$とする.

(1)$\mathrm{AD}=\sqrt{[ア]}$,$\displaystyle \mathrm{AE}=\frac{[イ]}{[ウ]}$である.

(2)$\displaystyle \cos \angle \mathrm{ABC}=\frac{\sqrt{[エ]}}{[オ]}$であり,$\mathrm{DC}=\sqrt{[カキ]}$である.

(3)円$\mathrm{O}$の半径は$\displaystyle \frac{[ク] \sqrt{[ケコサ]}}{[シス]}$である.

(4)$\triangle \mathrm{ABC}$の内接円の半径は
\[ \frac{[セソ] \sqrt{[タチ]}-[ツ] \sqrt{[テト]}}{[ナニ]} \]
である.
近畿大学 私立 近畿大学 2016年 第1問
$\triangle \mathrm{ABC}$の辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{AC}$を$1:3$に内分する点を$\mathrm{E}$とする.四角形$\mathrm{DBCE}$は円$\mathrm{O}$に内接しており,$\mathrm{BC}=6$,$\mathrm{AD}=\mathrm{DE}$とする.

(1)$\mathrm{AD}=\sqrt{[ア]}$,$\displaystyle \mathrm{AE}=\frac{[イ]}{[ウ]}$である.

(2)$\displaystyle \cos \angle \mathrm{ABC}=\frac{\sqrt{[エ]}}{[オ]}$であり,$\mathrm{DC}=\sqrt{[カキ]}$である.

(3)円$\mathrm{O}$の半径は$\displaystyle \frac{[ク] \sqrt{[ケコサ]}}{[シス]}$である.

(4)$\triangle \mathrm{ABC}$の内接円の半径は
\[ \frac{[セソ] \sqrt{[タチ]}-[ツ] \sqrt{[テト]}}{[ナニ]} \]
である.
近畿大学 私立 近畿大学 2016年 第3問
座標平面において,次の式で与えられる$2$つの円$C$,$C^\prime$を考える.

$C:x^2+y^2=13$
$C^\prime:x^2+y^2-8x+14y+13=0$

$2$つの円の$2$つの共通接線は,点$([アイ],\ [ウ])$で交わり,共通接線$\ell_1,\ \ell_2$の方程式は,それぞれ

$\ell_1:[エ]x+[オ]y=13$
$\ell_2:[カキ]x+y=[クケコ]$

である.

(1)円$C^\prime$と直線$\ell_1$の共有点の座標は$([サ],\ [シス])$である.
(2)$2$つの円の異なる$2$つの交点と$\ell_1$上の点$\mathrm{P}$が同一直線上にあるとき,点$\mathrm{P}$の座標は$([セ],\ [ソ])$である.
(3)円$C$,$C^\prime$の中心をそれぞれ$\mathrm{O}$,$\mathrm{O}^\prime$とする.$\ell_1$上の点$\mathrm{Q}$に対し,$\mathrm{OQ}+\mathrm{O}^\prime \mathrm{Q}$が最小となるとき,$\mathrm{Q}$の座標は
\[ \left( [タ],\ \displaystyle\frac{[チ]}{[ツ]} \right) \]
である.
京都女子大学 私立 京都女子大学 2016年 第2問
点$\mathrm{A}$を中心とする半径$3$の円$\mathrm{A}$,点$\mathrm{B}$を中心とする半径$4$の円$\mathrm{B}$,点$\mathrm{C}$を中心とする半径$5$の円$\mathrm{C}$の$3$つの円が互いに外接している.円$\mathrm{A}$と円$\mathrm{B}$との接点を$\mathrm{P}$,円$\mathrm{B}$と円$\mathrm{C}$との接点を$\mathrm{Q}$,円$\mathrm{C}$と円$\mathrm{A}$との接点を$\mathrm{R}$とおく.このとき,次の問に答えよ.

(1)$\angle \mathrm{BAC}=\theta$とおく.このとき,$\cos \theta$の値と$\triangle \mathrm{ABC}$の面積を求めよ.
(2)点$\mathrm{P}$における円$\mathrm{A}$の接線と点$\mathrm{R}$における円$\mathrm{A}$の接線との交点を$\mathrm{I}$とおく.直線$\mathrm{AI}$は$\angle \mathrm{PAR}$を二等分していることを証明せよ.
(3)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の半径を求めよ.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$にあてはまる答えを記入せよ.

(1)$100$未満の自然数で,$3$または$4$または$5$で割り切れる数は$[ア]$個,$3$または$4$で割り切れ$5$では割り切れない数は$[イ]$個である.
(2)\begin{mawarikomi}{45mm}{
(図は省略)
}
右図において,点$\mathrm{I}$を$\triangle \mathrm{ABC}$の内心,点$\mathrm{D}$を直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点とし,$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CA}=6$とする.このとき,$\mathrm{BD}=[ウ]$であり,$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}=[エ]$である.
\end{mawarikomi}

(3)整数$a$を$3$進数${122}_{(3)}$で割ったときの商と余りは,それぞれ${212}_{(3)}$と${102}_{(3)}$である.このとき,$a$を$3$進法で表すと${[オ]}_{(3)}$であり,$a$と$5$進数${410}_{(5)}$の和を$5$進法で表すと${[カ]}_{(5)}$である.
(4)不等式$2 |x-a|<x+1$について考える.$a=5$のとき,この不等式を満たす整数$x$は$[キ]$個である.また,この不等式を満たす整数$x$が$5$個あるとき,整数$a$の値は$[ク]$である.
(5)$\displaystyle -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4}$で$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[ケ]$,$\cos 2\theta=[コ]$である.
(6)$a,\ b$は自然数で,$a^5 b^2$が$20$桁の数であり,かつ,$\displaystyle \frac{a^5}{b^2}$の整数部分が$10$桁であるとする.このとき,$a,\ b$の桁数をそれぞれ$m,\ n$とすると,$m=[サ]$,$n=[シ]$である.
(7)円$x^2+y^2-2(x+y)+1=0$と直線$y+2x=k$が共有点をもつとき,$k$の最大値は$[ス]$である.また,この円と直線$y=ax-3a$が共有点をもつとき,$a$の最小値は$[セ]$である.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。