タグ「全部」の検索結果

4ページ目:全137問中31問~40問を表示)
慶應義塾大学 私立 慶應義塾大学 2015年 第2問
半径$1$の円周上に$8$個の点があり,それぞれの点は隣り合う点とすべて等間隔に配置されている.それらの点には,反時計回りに$1$から$8$までの番号が順番についている.また,中の見えない袋の中に,$8$個の球が入っていて,それらの球には,$1$から$8$の番号が$1$つずつ書かれている.

(1)袋から同時に$3$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$3$点を頂点とする三角形の作り方は,全部で$[$17$][$18$]$通りある.このとき,作られた三角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$19$]}-[$20$]}{[$21$]}$ & $\displaystyle\frac{[$22$]}{[$23$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{[$24$]}{[$25$]}$ & $\displaystyle\frac{[$26$]}{[$27$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$28$]}}{[$29$]}$ & $\displaystyle\frac{[$30$]}{[$31$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$32$]$ & $\displaystyle\frac{[$33$]}{[$34$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$35$]}+[$36$]}{[$37$]}$ & $\displaystyle\frac{[$38$]}{[$39$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}


(2)袋から同時に$4$つの球を取り出すとき,取り出した球と同じ番号のついた円周上の$4$点を頂点とする四角形の作り方は,全部で$[$40$][$41$]$通りある.このとき,作られた四角形の面積と,その面積が得られる確率の一覧表を作ることができる.以下の表を,上から下に面積の小さい順に並べて完成させなさい.

\begin{tabular}{cl}
\hline
面積 & 確率 \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$42$]}}{[$43$]}$ & $\displaystyle\frac{[$44$]}{[$45$][$46$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$47$]}+[$48$]}{[$49$]}$ & $\displaystyle\frac{[$50$][$51$]}{[$52$][$53$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\sqrt{[$54$]}$ & $\displaystyle\frac{[$55$]}{[$56$][$57$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $\displaystyle\frac{\sqrt{[$58$]}+[$59$]}{[$60$]}$ & $\displaystyle\frac{[$61$][$62$]}{[$63$][$64$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{2}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} $[$65$]$ & $\displaystyle\frac{[$66$]}{[$67$][$68$]}$ \phantom{$\displaystyle\frac{\displaystyle\frac{2}{2}}{\displaystyle\frac{2}{2}}$\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!} \\ \hline
\end{tabular}
上智大学 私立 上智大学 2015年 第3問
$1$個のさいころを$2$回投げ,$1$回目に出た目を$m$,$2$回目に出た目を$n$とする.ここで,さいころの$1$から$6$までのそれぞれの目が出る確率は$\displaystyle \frac{1}{6}$である.

さいころの出た目にもとづいて,座標平面に$3$点$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( \cos \frac{n\pi}{m},\ \sin \frac{n\pi}{m} \right)$,$\mathrm{C}(0,\ -1)$をとり,$\triangle \mathrm{ABC}$の面積を$S$とする.ただし,点$\mathrm{B}$が点$\mathrm{A}$または点$\mathrm{C}$と一致する場合は$S=0$とする.

(1)$S$がとりうる値は,$0$を含めて全部で$[マ]$通りある.
(2)$S$がとりうる値のうち,小さい方から$k$番目の値を$s_k$とする.

このとき,$s_1=0$,$\displaystyle s_2=\frac{[ミ]+\sqrt{[ム]}}{[メ]}$,$\displaystyle s_4=\frac{\sqrt{[モ]}}{[ヤ]}$である.また,$S=s_2$となる確率は$\displaystyle \frac{[ユ]}{[ヨ]}$,$S=s_4$となる確率は$\displaystyle \frac{[ラ]}{[リ]}$である.
東京理科大学 私立 東京理科大学 2015年 第5問
$n$を自然数とする.$k=1,\ 2,\ 3$に対して,次の条件$\mathrm{P}_k$を考える.

$\mathrm{P}_k: \quad k \leqq r \leqq n-k$を満たすすべての自然数$r$に対して,$\comb{n}{r}$は偶数である.

(1)$2 \leqq n \leqq 20$,$k=1$とする.$\mathrm{P}_1$を満たす$n$は全部で$[ア]$個ある.このうち,最大のものは$[イ][ウ]$である.
(2)$4 \leqq n \leqq 1000$,$k=2$とする.$\mathrm{P}_2$を満たす$n$は全部で$[エ][オ]$個ある.このうち,最大のものは$[カ][キ][ク]$である.
(3)$6 \leqq n \leqq {10}^{16}$,$k=3$とする.$\mathrm{P}_3$を満たす$n$は全部で$[ケ][コ][サ]$個ある.
(注意:$0.3010<\log_{10}2<0.3011$)
早稲田大学 私立 早稲田大学 2015年 第1問
$[ア]$~$[エ]$にあてはまる数または式を記入せよ.

(1)数列$\{a_n\}$は,次の条件$(ⅰ),\ (ⅱ)$を満たす.


(i) $a_1=0,\quad a_n \leqq 0 \quad (n=2,\ 3,\ 4,\ \cdots)$

(ii) $\displaystyle n=\int_{a_n}^{a_{n+1}} \left( x+\frac{1}{2} \right) \, dx \quad (n=1,\ 2,\ 3,\ \cdots)$


$n=2,\ 3,\ 4,\ \cdots$のとき,$a_n=[ア]$である.
(2)$\displaystyle \sum_{k=1}^7 \log_2 \cos \frac{k\pi}{16}=[イ]$
(3)実数$x,\ y$が,$|x|+|y|=1$を満たしているとき,
\[ |7x-3y|+|5x-11y| \]
の最大値は$[ウ]$である.
(4)関数$f(x)=1-2 |x|$を考える.次の条件$(ⅰ),\ (ⅱ)$を満たす実数$a$は全部で$[エ]$個ある.

(i) $f(a) \neq a$
(ii) $f(f(f(a)))=a$
沖縄国際大学 私立 沖縄国際大学 2015年 第4問
下図のような街路で自宅からバス停まで最短距離で行くとする.このとき,以下の問いに答えなさい.
(図は省略)

(1)全部で行き方は何通りあるか.
(2)$\mathrm{A}$交差点を通る行き方は何通りあるか.
(3)コンビニの前を通らない行き方は何通りあるか.
(4)$\mathrm{A}$交差点を通り,コンビニの前を通らない行き方は何通りあるか.
獨協医科大学 私立 獨協医科大学 2015年 第1問
次の問いに答えなさい.

(1)定数$a$を正の実数とする.関数
\[ f(\theta)=4 \sin 2\theta+6 \cos^2 \theta+4a(\sin \theta+2 \cos \theta)+a^2+1 \]
の$0 \leqq \theta \leqq \pi$における最大値を$M$,最小値を$m$とする.
$t=\sin \theta+2 \cos \theta$とおく.$f(\theta)$を$t$を用いて表すと
\[ f(\theta)=[ア]t^2+4at+a^2-[イ] \]
である.
$M=a^2+[ウ] \sqrt{[エ]}a+[オ]$であり,これを与える$\theta$の値を$\theta_0$とすると,$\displaystyle \tan \theta_0=\frac{[カ]}{[キ]}$である.
また,$M-m=14$となる$a$の値は,$a=\sqrt{[ク]}-\sqrt{[ケ]}$である.
(2)定数$m$を正の整数とする.
$xy$平面上に$2$点$\mathrm{A}(21,\ 0)$,$\mathrm{B}(0,\ m)$がある.点$(1,\ 0)$と直線$\mathrm{AB}$との距離を$d$とすると
\[ d=\frac{[コサ]m}{\sqrt{m^2+[シスセ]}} \]
である.
$d$が有理数となるような$m$の値は全部で$[ソ]$個あり,そのうち$m$の値が最大のものは$m=[タチツ]$である.
また,$d$が整数となるとき,$m=[テト]$,$d=[ナニ]$である.
大阪工業大学 私立 大阪工業大学 2015年 第1問
次の空所を埋めよ.

(1)$2$次方程式$x^2-x+k=0$が異なる$2$つの正の実数$m$と$m^2$を解にもつとき,実数$m,\ k$の値は,$m=[ア]$,$k=[イ]$である.
(2)$f(x)=2 \sin x \cos x+\sqrt{3} \cos 2x$とする.このとき,$\displaystyle f(x)=2 \sin \left( 2x+[ウ] \right)$である.ただし,$0 \leqq [ウ]<2\pi$とする.また,$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,$f(x)$の最小値$m$は,$m=[エ]$である.
(3)$3^a=2,\ 8^b=9$のとき,$a=[オ]$であり,積$ab$の値を対数を用いずに表すと,$ab=[カ]$である.
(4)$\fbox{$1$}$,$\fbox{$1$}$,$\fbox{$2$}$,$\fbox{$3$}$の$4$枚のカードのうち,$3$枚を並べて$3$桁の整数をつくるとき,つくられる整数は全部で$[キ]$個ある.また,$\fbox{$0$}$,$\fbox{$1$}$,$\fbox{$1$}$,$\fbox{$2$}$,$\fbox{$3$}$の$5$枚のカードのうち,$4$枚を並べて$4$桁の整数をつくるとき,つくられる整数は全部で$[ク]$個ある.
旭川大学 私立 旭川大学 2015年 第1問
次の各設問に答えなさい.

(1)$\displaystyle 3+\frac{n-2}{2}<\frac{n}{3}$を満たす最大の整数$n$を求めよ.
(2)$a,\ b,\ c$を定数とする.ただし$a \neq 0$とする.$2$次関数$y=ax^2+bx+c$のグラフが$3$点$(-1,\ 2)$,$(2,\ 1)$,$(3,\ -6)$を通るとき,$a,\ b,\ c$の値を求めよ.
(3)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$を使ってできる$4$桁の整数は全部で$[ア]$通りであり,その中で$2015$以下の整数は$[イ]$通りである.ただし,同じ数字は繰り返し使わないものとする.
(4)$\triangle \mathrm{ABC}$において,$\displaystyle \frac{8}{\sin A}=\frac{7}{\sin B}=\frac{5}{\sin C}$である.このとき,$\angle \mathrm{B}$の大きさを求めよ.
(5)方程式$|x^2-2|=x$の解を求めよ.
天使大学 私立 天使大学 2015年 第4問
次の問いに答えなさい.

(1)$\mathrm{A}$,$\mathrm{B}$の$2$人を含む$5$人でじゃんけんを$1$回行う.$5$人の手(グー・チョキ・パー)の出し方の組み合わせは,同様に確からしいとする.

(i) $\mathrm{A}$が$\mathrm{B}$に「グー」で勝つ確率は$\displaystyle \frac{\mkakko{$\mathrm{a}$}}{\mkakko{$\mathrm{b}$} \mkakko{$\mathrm{c}$} \mkakko{$\mathrm{d}$}}$である.ただし$\mkakko{$\mathrm{a}$}$は正の数である.
(ii) $\mathrm{A}$が$\mathrm{B}$に勝つ確率は$\displaystyle \frac{\mkakko{$\mathrm{e}$}}{\mkakko{$\mathrm{f}$} \mkakko{$\mathrm{g}$}}$である.ただし$\mkakko{$\mathrm{e}$}$は正の数である.

(2)$5$人の男性と$5$人の女性で,$2$人のグループを$5$組つくる.

(i) グループのつくり方は,全部で$\mkakko{$\mathrm{h}$} \mkakko{$\mathrm{i}$} \mkakko{$\mathrm{j}$}$通りある.
(ii) 組み合わせをクジで決めるとする.女性の入らない組が少なくとも$1$つできる確率は$\displaystyle \frac{\mkakko{$\mathrm{k}$} \mkakko{$\mathrm{l}$}}{\mkakko{$\mathrm{m}$} \mkakko{$\mathrm{n}$}}$である.ただし$\mkakko{$\mathrm{k}$}$は正の数である.
西南学院大学 私立 西南学院大学 2015年 第1問
男子$4$人,女子$4$人の合計$8$人のメンバーがいる.以下の問に答えよ.

(1)$8$人を同性$2$人から成る$4$つのグループに分け,さらにこのグループを,先頭から男子グループ,女子グループ,男子グループ,女子グループの順に並べる方法は全部で$[アイ]$通りある.
(2)くじ引きで,男女ペアから成る$4$つのグループを作る.このときメンバーの$1$人である自分が,ある特定の異性と同じグループになる確率は$\displaystyle \frac{[ウ]}{[エ]}$である.
(3)くじ引きで,$2$人ずつ$4$つのグループを作る.このとき同性同士のグループが少なくとも$1$つできる確率は$\displaystyle \frac{[オカ]}{[キク]}$である.
スポンサーリンク

「全部」とは・・・

 まだこのタグの説明は執筆されていません。