タグ「体積」の検索結果

2ページ目:全290問中11問~20問を表示)
奈良女子大学 国立 奈良女子大学 2016年 第1問
四面体$\mathrm{ABCD}$において,$\mathrm{AB}=3$,$\mathrm{AC}=\mathrm{AD}=5$,$\mathrm{BC}=\mathrm{BD}=4$,$\mathrm{CD}=6$であるとする.次の問いに答えよ.

(1)三角形$\mathrm{BCD}$の面積を求めよ.
(2)四面体$\mathrm{ABCD}$の体積を求めよ.
(3)辺$\mathrm{CD}$の中点を$\mathrm{M}$,点$\mathrm{B}$から直線$\mathrm{AM}$へ下ろした垂線と直線$\mathrm{AM}$の交点を$\mathrm{H}$とする.このとき,線分$\mathrm{BH}$の長さを求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2016年 第2問
$xyz$空間において連立不等式
\[ |x| \leqq 1,\quad |y| \leqq 1,\quad |z| \leqq 1 \]
の表す領域を$Q$とし,正の実数$r$に対して$x^2+y^2+z^2 \leqq r^2$の表す領域を$S$とする.また,$Q$と$S$のいずれか一方のみに含まれる点全体がなす領域を$R$とし,$R$の体積を$V(r)$とする.さらに

$x \geqq 1$の表す領域と$S$の共通部分を$S_x$
$y \geqq 1$の表す領域と$S$の共通部分を$S_y$
$z \geqq 1$の表す領域と$S$の共通部分を$S_z$

とし,

$S_x \neq \phi$を満たす$r$の最小値を$r_1$
$S_x \cap S_y \neq \phi$を満たす$r$の最小値を$r_2$
$S_x \cap S_y \cap S_z \neq \phi$を満たす$r$の最小値を$r_3$

とする.ただし,$\phi$は空集合を表す.このとき以下の各問いに答えよ.

(1)$\displaystyle r=\frac{\sqrt{10}}{3}$のとき,$R$の$xy$平面による断面を図示せよ.
(2)$r_1,\ r_2,\ r_3$および$V(r_1)$,$V_(r_3)$を求めよ.
(3)$r \geqq r_1$のとき,$S_x$の体積を$r$を用いて表せ.
(4)$0<r \leqq r_2$において,$V(r)$が最小となる$r$の値を求めよ.
防衛医科大学校 国立 防衛医科大学校 2016年 第3問
四面体$\mathrm{ABCD}$において,$\triangle \mathrm{BCD}$は$1$辺の長さが$2 \sqrt{2}$の正三角形,その他$3$つの三角形は$2$辺の長さが$4$の二等辺三角形である.辺$\mathrm{AB}$を$3:2$に内分する点を$\mathrm{I}$,辺$\mathrm{AC}$を$5:1$に外分する点を$\mathrm{K}$,辺$\mathrm{BC}$と$\mathrm{IK}$の交点を$\mathrm{J}$として,以下の問に答えよ.

(1)$\mathrm{BJ}:\mathrm{JC}$,$\mathrm{IJ}:\mathrm{JK}$はそれぞれいくらか.
(2)$\mathrm{A}$から$\triangle \mathrm{BCD}$に下ろした垂線の足を$\mathrm{G}$,$\mathrm{B}$から$\triangle \mathrm{ACD}$に下ろした垂線の足を$\mathrm{H}$とする.$\mathrm{AG}$,$\mathrm{BH}$の長さはいくらか.
(3)四面体$\mathrm{JCDK}$の体積はいくらか.
九州工業大学 国立 九州工業大学 2016年 第1問
四面体$\mathrm{OABC}$の面はすべて合同であり,$\mathrm{OA}=5$,$\mathrm{OB}=8$,$\mathrm{AB}=7$である.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$および$\overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$の定める平面を$\alpha$とし,$\alpha$上の点$\mathrm{H}$を直線$\mathrm{CH}$と$\alpha$が垂直になるように選ぶ.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$(2)$の点$\mathrm{H}$に対して,線分$\mathrm{CH}$の長さを求めよ.
(4)四面体$\mathrm{OABC}$の体積$V_1$を求めよ.また,辺$\mathrm{OC}$の中点を$\mathrm{D}$とし,さらに辺$\mathrm{OB}$上に点$\mathrm{E}$を$\mathrm{AE}+\mathrm{ED}$が最小となるようにとる.このとき,四面体$\mathrm{OAED}$の体積$V_2$を求めよ.
長崎大学 国立 長崎大学 2016年 第2問
空間において,$3$点$\mathrm{A}(5,\ 0,\ 1)$,$\mathrm{B}(4,\ 2,\ 0)$,$\mathrm{C}(0,\ 1,\ 5)$を頂点とする三角形$\mathrm{ABC}$がある.以下の問いに答えよ.

(1)線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めよ.
(2)三角形$\mathrm{ABC}$の面積$S$を求めよ.
(3)原点$\mathrm{O}(0,\ 0,\ 0)$から平面$\mathrm{ABC}$に垂線を下し,平面$\mathrm{ABC}$との交点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{AH}}=\ell \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AC}}$とおくとき,実数$\ell,\ m$の値を求めよ.
(4) 直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{AH}}=k \overrightarrow{\mathrm{AM}}$とおくとき,実数$k$の値と三角形$\mathrm{HBC}$の面積$T$を求めよ.
(5)原点$\mathrm{O}$を頂点,四角形$\mathrm{ABHC}$を底面とする四角錐$\mathrm{O}$-$\mathrm{ABHC}$の体積$V$を求めよ.
山口大学 国立 山口大学 2016年 第4問
点$\mathrm{O}(0,\ 0,\ 0)$と点$\mathrm{A}(1,\ 0,\ 0)$に対して,点$\mathrm{B}(b_1,\ b_2,\ 0)$と点$\mathrm{C}(c_1,\ c_2,\ c_3)$は
\[ \angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}=\frac{3\pi}{5},\quad |\overrightarrow{\mathrm{OB|}}=|\overrightarrow{\mathrm{OC|}}=1 \]
を満たしているとする.$b_2>0$,$c_3>0$,また,$\displaystyle p=2 \cos \frac{\pi}{5}$とするとき,以下の問いに答えなさい.ただし,次の等式$①$を証明なしに用いてもよい.
\[ 4 \cos \frac{2\pi}{5} \cos \frac{\pi}{5}=1 \cdots\cdots ① \]

(1)等式$p^2=p+1$が成り立つことを示しなさい.
(2)$\displaystyle b_1=\frac{1-p}{2}$であることを示しなさい.
(3)点$\mathrm{E}(0,\ 0,\ 1)$に対して,$\overrightarrow{\mathrm{OC}}$を実数$k,\ l,\ m$を用いて
\[ \overrightarrow{\mathrm{OC}}=k \overrightarrow{\mathrm{OA}}+l \overrightarrow{\mathrm{OB}}+m \overrightarrow{\mathrm{OE}} \]
と表すとき,$\displaystyle m^2=\frac{2+p}{5}$であることを示しなさい.
(4)四面体$\mathrm{OABC}$の体積を$V$とする.$\displaystyle V=\frac{p}{12}$であることを示しなさい.
山梨大学 国立 山梨大学 2016年 第2問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$|\overrightarrow{a|}=2$,$|\overrightarrow{b|}=\sqrt{3}$,$|\overrightarrow{c|}=1$,$\overrightarrow{a} \cdot \overrightarrow{b}=2$,$\displaystyle \overrightarrow{b} \cdot \overrightarrow{c}=\frac{4}{3}$,$\displaystyle \overrightarrow{c} \cdot \overrightarrow{a}=\frac{4}{3}$を満たすとする.点$\mathrm{C}$から平面$\mathrm{OAB}$に垂線を下ろし,平面$\mathrm{OAB}$との交点を$\mathrm{H}$とする.

(1)ベクトル$\overrightarrow{\mathrm{OH}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積$V$を求めよ.
(3)辺$\mathrm{BC}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$を$4:1$に内分する点を$\mathrm{N}$とする.このとき,直線$\mathrm{CH}$と直線$\mathrm{ON}$が交わることを示せ.また,その$2$直線の交点を$\mathrm{P}$とするとき,$\mathrm{CP}:\mathrm{PH}$を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
スポンサーリンク

「体積」とは・・・

 まだこのタグの説明は執筆されていません。