タグ「交点」の検索結果

19ページ目:全1364問中181問~190問を表示)
岐阜薬科大学 公立 岐阜薬科大学 2016年 第3問
関数$f(x)=\sqrt{3} \sin x-\cos x$および$g(x)=\sin x+\sqrt{3} \cos x$がある.以下の問いに答えよ.

(1)$0 \leqq x \leqq \pi$の範囲において,曲線$\displaystyle y=\frac{g(x)}{f(x)}$のグラフをかけ.
(2)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$\displaystyle y=\frac{g(x)}{f(x)}$と$\displaystyle y=\frac{f(x)}{g(x)}$の交点の座標を求めよ.
(3)$0 \leqq x \leqq \pi$の範囲において,$2$つの曲線$\displaystyle y=\frac{g(x)}{f(x)}$と$\displaystyle y=\frac{f(x)}{g(x)}$,および$x$軸とで囲まれた部分の面積を求めよ.
会津大学 公立 会津大学 2016年 第4問
曲線$y=e^{-x}$を$C$とし,$n$を自然数とする.このとき,以下の空欄をうめよ.

(1)曲線$C$上の点$\mathrm{P}(t,\ e^{-t})$における接線が$x$軸と交わる点を$\mathrm{Q}$とする.点$\mathrm{Q}$の$x$座標は$[イ]$である.
(2)一般に,曲線$C$上の点$\mathrm{P}_n$が与えられたとき,この点$\mathrm{P}_n$における接線が$x$軸と交わる点を$\mathrm{Q}_n$とし,点$\mathrm{Q}_n$を通り,$x$軸に垂直な直線と曲線$C$の交点を$\mathrm{P}_{n+1}$とする.$\mathrm{P}_1(0,\ 1)$から出発して,$\mathrm{Q}_1$,$\mathrm{P}_2$,$\mathrm{Q}_2$,$\cdots$のように点をとる.このとき,点$\mathrm{Q}_n$の$x$座標は$[ロ]$である.
(3)曲線$C$,直線$\mathrm{P}_n \mathrm{Q}_n$および直線$\mathrm{Q}_n \mathrm{P}_{n+1}$で囲まれた部分の面積を$S_n$とする.このとき,$S_n=[ハ]$である.
(4)$\displaystyle \sum_{n=1}^\infty S_n=[ニ]$である.
兵庫県立大学 公立 兵庫県立大学 2016年 第3問
三角形$\mathrm{ABC}$の辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{D}$,辺$\mathrm{CA}$を$1:2$に内分する点を$\mathrm{E}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{F}$とする.また線分$\mathrm{AD}$と線分$\mathrm{BE}$の交点を$\mathrm{P}$,線分$\mathrm{BE}$と線分$\mathrm{CF}$の交点を$\mathrm{Q}$,線分$\mathrm{CF}$と線分$\mathrm{AD}$の交点を$\mathrm{R}$とする.

(1)$\overrightarrow{\mathrm{AP}}=\ell \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AC}}$とするとき,$\ell$と$m$の値を求めよ.
(2)三角形$\mathrm{ABC}$の面積が$1$のとき,三角形$\mathrm{PQR}$の面積を求めよ.
北九州市立大学 公立 北九州市立大学 2016年 第3問
曲線$C:y=x^3-6x^2+9x$について,以下の問いに答えよ.

(1)曲線$C$の増減,極値,グラフの凹凸および変曲点を調べて,そのグラフをかけ.
(2)定数$a$に対し,直線$\ell:y=ax$が曲線$C$と$x=2$で交点をもつとき,$a$の値と全ての交点の座標を求めよ.
(3)$(2)$の条件のもとで曲線$C$と直線$\ell$とで囲まれた部分の面積を求めよ.
(4)直線$\ell$が曲線$C$と$x \geqq 0$の範囲で異なる$3$点で交わるような$a$の値の範囲を求めよ.
北九州市立大学 公立 北九州市立大学 2016年 第3問
座標平面上の$4$点を$\mathrm{O}(0,\ 0)$,$\mathrm{P}(\cos \theta,\ \sin \theta)$,$\mathrm{A}(k,\ 1)$,$\mathrm{B}(k,\ -1)$とする.ただし,$k>1$,$0^\circ<\theta<{90}^\circ$であるとする.以下の問題に答えよ.

(1)$\triangle \mathrm{PAB}$の面積を$\theta$と$k$を用いて表せ.
(2)直線$\mathrm{PB}$と$x$軸の交点を$\mathrm{C}$とするとき,$\triangle \mathrm{OPC}$の面積を$\theta$と$k$を用いて表せ.
(3)$\mathrm{PB} \perp \mathrm{OA}$が成り立つための条件を$\theta$と$k$を用いて表せ.
(4)$\theta={30}^\circ$のとき,$\mathrm{PB} \perp \mathrm{OA}$が成り立つとする.このとき,$k$の値を求めよ.
京都府立大学 公立 京都府立大学 2016年 第3問
$a$を$0$でない実数とする.$xy$平面上に$3$つの曲線$C_1:y=x^2+a^4$,$C_2:y=x^2$,$C_3:y=-x^2+2a^2x-2a^4+4a$がある.以下の問いに答えよ.

(1)$C_1$に$1$本の接線を引き,$C_2$との交点を$\mathrm{P}$,$\mathrm{Q}$とする.点$\mathrm{P}$における$C_2$の接線と,点$\mathrm{Q}$における$C_2$の接線との交点を$\mathrm{R}$とする.点$\mathrm{R}$の軌跡$C_4$の方程式を求めよ.
(2)$C_3$と$C_4$が$2$つの交点をもつとき,$a$の値の範囲を求めよ.
(3)$(2)$の条件を満たすとき,$C_3$と$C_4$で囲まれた部分の面積を$a$の関数と考えて$S(a)$とする.$S(a)$の最大値と,そのときの$a$の値を求めよ.
県立広島大学 公立 県立広島大学 2016年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{OA}=2$,$\mathrm{OB}=2$,$\mathrm{OC}=4$,
\[ \angle \mathrm{AOB}=\frac{\pi}{2},\quad \angle \mathrm{AOC}=\frac{\pi}{3},\quad \angle \mathrm{BOC}=\frac{\pi}{3} \]
とする.また,線分$\mathrm{OA}$を$2:1$に外分する点を$\mathrm{P}$,線分$\mathrm{OB}$を$3:2$に外分する点を$\mathrm{Q}$とする.線分$\mathrm{CQ}$,線分$\mathrm{CP}$の中点をそれぞれ$\mathrm{R}$,$\mathrm{S}$とし,直線$\mathrm{PR}$と直線$\mathrm{QS}$の交点を$\mathrm{T}$とする.さらに,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OT}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{T}$から平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{TH}$とする.$\overrightarrow{\mathrm{HT}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)四面体$\mathrm{OABT}$の体積を求めよ.
前橋工科大学 公立 前橋工科大学 2016年 第2問
空間内の$3$点$\mathrm{A}(0,\ -1,\ 2)$,$\mathrm{B}(-3,\ -2,\ 4)$,$\mathrm{C}(1,\ 1,\ 3)$を通る平面を$\alpha$とする.次の問いに答えなさい.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$と$\triangle \mathrm{ABC}$の面積を求めなさい.
(2)原点$\mathrm{O}$から平面$\alpha$に垂線を下ろし,$\alpha$との交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めなさい.
(3)直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{D}$とするとき,線分$\mathrm{AH}$と$\mathrm{AD}$の長さの比を求めなさい.
センター試験 問題集 センター試験 2015年 第6問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\mathrm{AC}=5$,$\mathrm{BC}=\sqrt{5}$とする.辺$\mathrm{AC}$上に点$\mathrm{D}$を$\mathrm{AD}=3$となるようにとり,辺$\mathrm{BC}$の$\mathrm{B}$の側の延長と$\triangle \mathrm{ABD}$の外接円との交点で$\mathrm{B}$と異なるものを$\mathrm{E}$とする.

$\mathrm{CE} \cdot \mathrm{CB}=[アイ]$であるから,$\mathrm{BE}=\sqrt{[ウ]}$である.
$\triangle \mathrm{ACE}$の重心を$\mathrm{G}$とすると,$\displaystyle \mathrm{AG}=\frac{[エオ]}{[カ]}$である.
$\mathrm{AB}$と$\mathrm{DE}$の交点を$\mathrm{P}$とすると
\[ \frac{\mathrm{DP}}{\mathrm{EP}}=\frac{[キ]}{[ク]} \cdots\cdots① \]
である.
$\triangle \mathrm{ABC}$と$\triangle \mathrm{EDC}$において,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{D}$,$\mathrm{E}$は同一円周上にあるので$\angle \mathrm{CAB}=\angle \mathrm{CED}$で,$\angle \mathrm{C}$は共通であるから
\[ \mathrm{DE}=[ケ] \sqrt{[コ]} \cdots\cdots② \]
である.
$①$,$②$から,$\displaystyle \mathrm{EP}=\frac{[サ] \sqrt{[シ]}}{[ス]}$である.
京都大学 国立 京都大学 2015年 第4問
$xyz$空間の中で,$(0,\ 0,\ 1)$を中心とする半径$1$の球面$S$を考える.点$\mathrm{Q}$が$(0,\ 0,\ 2)$以外の$S$上の点を動くとき,点$\mathrm{Q}$と点$\mathrm{P}(1,\ 0,\ 2)$の$2$点を通る直線$\ell$と平面$z=0$との交点を$\mathrm{R}$とおく.$\mathrm{R}$の動く範囲を求め,図示せよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。