タグ「交点」の検索結果

18ページ目:全1364問中171問~180問を表示)
京都女子大学 私立 京都女子大学 2016年 第2問
点$\mathrm{A}$を中心とする半径$3$の円$\mathrm{A}$,点$\mathrm{B}$を中心とする半径$4$の円$\mathrm{B}$,点$\mathrm{C}$を中心とする半径$5$の円$\mathrm{C}$の$3$つの円が互いに外接している.円$\mathrm{A}$と円$\mathrm{B}$との接点を$\mathrm{P}$,円$\mathrm{B}$と円$\mathrm{C}$との接点を$\mathrm{Q}$,円$\mathrm{C}$と円$\mathrm{A}$との接点を$\mathrm{R}$とおく.このとき,次の問に答えよ.

(1)$\angle \mathrm{BAC}=\theta$とおく.このとき,$\cos \theta$の値と$\triangle \mathrm{ABC}$の面積を求めよ.
(2)点$\mathrm{P}$における円$\mathrm{A}$の接線と点$\mathrm{R}$における円$\mathrm{A}$の接線との交点を$\mathrm{I}$とおく.直線$\mathrm{AI}$は$\angle \mathrm{PAR}$を二等分していることを証明せよ.
(3)$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る円の半径を求めよ.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$にあてはまる答えを記入せよ.

(1)$100$未満の自然数で,$3$または$4$または$5$で割り切れる数は$[ア]$個,$3$または$4$で割り切れ$5$では割り切れない数は$[イ]$個である.
(2)\begin{mawarikomi}{45mm}{
(図は省略)
}
右図において,点$\mathrm{I}$を$\triangle \mathrm{ABC}$の内心,点$\mathrm{D}$を直線$\mathrm{AI}$と辺$\mathrm{BC}$の交点とし,$\mathrm{AB}=3$,$\mathrm{BC}=4$,$\mathrm{CA}=6$とする.このとき,$\mathrm{BD}=[ウ]$であり,$\displaystyle \frac{\mathrm{AI}}{\mathrm{ID}}=[エ]$である.
\end{mawarikomi}

(3)整数$a$を$3$進数${122}_{(3)}$で割ったときの商と余りは,それぞれ${212}_{(3)}$と${102}_{(3)}$である.このとき,$a$を$3$進法で表すと${[オ]}_{(3)}$であり,$a$と$5$進数${410}_{(5)}$の和を$5$進法で表すと${[カ]}_{(5)}$である.
(4)不等式$2 |x-a|<x+1$について考える.$a=5$のとき,この不等式を満たす整数$x$は$[キ]$個である.また,この不等式を満たす整数$x$が$5$個あるとき,整数$a$の値は$[ク]$である.
(5)$\displaystyle -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4}$で$\displaystyle \sin \theta+\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta=[ケ]$,$\cos 2\theta=[コ]$である.
(6)$a,\ b$は自然数で,$a^5 b^2$が$20$桁の数であり,かつ,$\displaystyle \frac{a^5}{b^2}$の整数部分が$10$桁であるとする.このとき,$a,\ b$の桁数をそれぞれ$m,\ n$とすると,$m=[サ]$,$n=[シ]$である.
(7)円$x^2+y^2-2(x+y)+1=0$と直線$y+2x=k$が共有点をもつとき,$k$の最大値は$[ス]$である.また,この円と直線$y=ax-3a$が共有点をもつとき,$a$の最小値は$[セ]$である.
大阪市立大学 公立 大阪市立大学 2016年 第3問
$a,\ b$は実数で,$b>0$とする.放物線$y=x^2$と直線$y=ax+b$の$2$つの交点を$\mathrm{P}$,$\mathrm{Q}$とおく.次の問いに答えよ.

(1)線分$\mathrm{PQ}$の長さを,$a$と$b$を用いて表せ.
(2)直線$y=ax+b$が点$\displaystyle \left( 1,\ \frac{5}{4} \right)$を通るときの,線分$\mathrm{PQ}$の長さの最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
大阪府立大学 公立 大阪府立大学 2016年 第4問
正の実数$a$に対して,$y=ax^2$のグラフを$C_1$,$\displaystyle y=\frac{a^2-1}{a}x^2+\frac{2}{a}x-\frac{1}{a}$のグラフを$C_2$とする.このとき,以下の問いに答えよ.

(1)$C_1$と$C_2$の共有点は点$(1,\ a)$のみであることを示せ.
(2)$C_2$と$x$軸の$0<x<1$の部分との交点は,点$\displaystyle \left( \frac{1}{a+1},\ 0 \right)$のみであることを示せ.
(3)$C_1$の$0 \leqq x \leqq 1$の部分,$C_2$の$\displaystyle \frac{1}{a+1} \leqq x \leqq 1$の部分,および$x$軸の$\displaystyle 0 \leqq x \leqq \frac{1}{a+1}$の部分とで囲まれる図形の面積を$S$とする.$S$を$a$を用いて表せ.
(4)$a$がすべての正の実数を動くとき,$(3)$で求めた面積$S$の最大値を求めよ.
大阪府立大学 公立 大阪府立大学 2016年 第2問
\begin{mawarikomi}{50mm}{(図は省略)}
右図のような$1$辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$に対し,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$\displaystyle 0<t<\frac{1}{2}$となる$t$に対して,辺$\mathrm{AE}$を$t:1-t$に内分する点を$\mathrm{P}$,辺$\mathrm{CG}$を$2t:1-2t$に内分する点を$\mathrm{Q}$とする.$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$の定める平面を$\alpha$とし,平面$\alpha$と直線$\mathrm{BF}$との交点を$\mathrm{R}$とすると,四角形$\mathrm{OPRQ}$は平行四辺形である.平行四辺形$\mathrm{OPRQ}$の面積を$S$,四角錐$\mathrm{DOPRQ}$の体積を$V$とする.このとき,以下の問いに答えよ.
\end{mawarikomi}

(1)$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角を$\theta$とするとき,$\cos \theta$を$t$を用いて表せ.
(2)$S$を$t$を用いて表せ.
(3)平面$\alpha$に点$\mathrm{D}$から垂線$\mathrm{DH}$を下ろす.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{c},\ \overrightarrow{d}$と$t$を用いて表せ.
(4)$V$は$t$によらず一定であることを示せ.
大阪府立大学 公立 大阪府立大学 2016年 第3問
楕円$\displaystyle C_1:\frac{x^2}{9}+\frac{y^2}{5}=1$の焦点を$\mathrm{F}$,$\mathrm{F}^\prime$とする.ただし,$\mathrm{F}$の$x$座標は正である.正の実数$m$に対し,$2$直線$y=mx$,$y=-mx$を漸近線にもち,$2$点$\mathrm{F}$,$\mathrm{F}^\prime$を焦点とする双曲線を$C_2$とする.第$1$象限にある$C_1$と$C_2$の交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)$C_2$の方程式を$m$を用いて表せ.
(2)線分$\mathrm{FP}$および線分$\mathrm{F}^\prime \mathrm{P}$の長さを$m$を用いて表せ.
(3)$\angle \mathrm{F}^\prime \mathrm{PF}={60}^\circ$となる$m$の値を求めよ.
富山県立大学 公立 富山県立大学 2016年 第1問
$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が同一平面上にある.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は,$\mathrm{OA}:\mathrm{OB}=3:2$,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$を満たすとする.点$\mathrm{C}$が線分$\mathrm{OA}$の垂直二等分線と線分$\mathrm{OB}$の垂直二等分線の交点であるとき,$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
会津大学 公立 会津大学 2016年 第5問
平面上に平行四辺形$\mathrm{ABCD}$がある.辺$\mathrm{AB}$の中点を$\mathrm{E}$とし,辺$\mathrm{BC}$,辺$\mathrm{CD}$,辺$\mathrm{DA}$それぞれを$1:2$に内分する点を順に$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.線分$\mathrm{EG}$と線分$\mathrm{FH}$の交点を$\mathrm{I}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{d}$とおくとき,以下の問いに答えよ.

(1)$\mathrm{EI}:\mathrm{IG}=t:(1-t)$とおくとき,$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$,$\overrightarrow{d}$,$t$を用いて表せ.
(2)$\mathrm{HI}:\mathrm{IF}=u:(1-u)$とおくとき,$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$,$\overrightarrow{d}$,$u$を用いて表せ.
(3)$\overrightarrow{\mathrm{AI}}$を$\overrightarrow{b}$,$\overrightarrow{d}$を用いて表せ.
広島市立大学 公立 広島市立大学 2016年 第4問
三角形$\mathrm{ABC}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおき,三角形$\mathrm{ABC}$の内部に点$\mathrm{P}$を$\displaystyle \overrightarrow{\mathrm{AP}}=\frac{1}{4} \overrightarrow{b}+\frac{1}{2} \overrightarrow{c}$を満たすようにとる.また,直線$\mathrm{AP}$と直線$\mathrm{BC}$の交点を$\mathrm{D}$,直線$\mathrm{BP}$と直線$\mathrm{AC}$の交点を$\mathrm{E}$,直線$\mathrm{CP}$と直線$\mathrm{AB}$の交点を$\mathrm{F}$とする.このとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{AD}}$を$\overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)線分の長さの比$\mathrm{AF}:\mathrm{FB}$,$\mathrm{AE}:\mathrm{EC}$をそれぞれ求めよ.
(3)次の問いに答えよ.

(i) 点$\mathrm{P}$が三角形$\mathrm{ABC}$の垂心であるとする.すなわち,$\overrightarrow{\mathrm{AB}} \perp \overrightarrow{\mathrm{CF}}$かつ$\overrightarrow{\mathrm{AC}} \perp \overrightarrow{\mathrm{BE}}$が成り立っている.このとき,$|\overrightarrow{b|}:|\overrightarrow{c|}$および$\cos \angle \mathrm{BAC}$の値を求めよ.
(ii) 点$\mathrm{P}$が三角形$\mathrm{ABC}$の外心になることがあるかどうかを調べよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。