タグ「不等号」の検索結果

8ページ目:全4604問中71問~80問を表示)
富山大学 国立 富山大学 2016年 第2問
次の条件によって定められる数列$\{a_n\}$がある.
\[ a_1=-\frac{1}{5},\quad a_n-a_{n+1}=2(3n+1)(n-3)a_na_{n+1} \quad (n=1,\ 2,\ \cdots) \]
このとき,次の問いに答えよ.

(1)$1$以上の整数$n$に対し,$a_n \neq 0$であることを示せ.
(2)$a_n$を$n$を用いて表せ.
(3)$a_n<0$を満たす$a_n$の値のうち,最大のものを$M$とする.$a_n=M$であるような$n$を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第2問
関数$y=f(x)$のグラフが媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=\sin \theta-\theta \cos \theta \phantom{\frac{1}{[ ]}} \\
y=\cos \theta+\theta \sin \theta \phantom{\frac{1}{1}}
\end{array} \right. \quad (0 \leqq \theta \leqq \pi) \]
と表されている.

(1)関数$y=f(x)$の極値を求めよ.

(2)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \theta \sin 2\theta \, d\theta$および$\displaystyle \int_0^{\frac{\pi}{2}} \theta^2 \cos 2\theta \, d\theta$を計算せよ.

(3)関数$y=f(x)$のグラフと$x$軸,および$2$直線$x=0$と$x=1$で囲まれた図形の面積$S$を求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第3問
$a$を$0<a<1$を満たす定数とし,$x,\ y$が$xy^2=a^3$を満たすとする.$x>0$,$y>0$とするとき,次の問いに答えよ.

(1)$X=\log_a x$,$Y=\log_a y$とおくとき,$X$と$Y$の関係式を求めよ.
(2)$x,\ y$が$\log_a x \cdot \log_a y \geqq 1$を満たすとき,$y$のとり得る値の範囲を求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第8問
関数
\[ y=x^x(1-x)^{1-x} \quad (0<x<1) \]
について,次の問いに答えよ.

(1)$y$の導関数を求めよ.
(2)$y$のとり得る値の範囲を求めよ.ただし,必要があれば,$\displaystyle \lim_{t \to +0}t^t=1$であることを証明なしに用いてよい.
静岡大学 国立 静岡大学 2016年 第2問
$c$は$c>1$を満たす定数とする.数列$\{a_n\}$を次の条件によって定める.
\[ a_1=1,\quad c(a_{n+1})^n=(a_n)^{n+1},\quad a_n>0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の各問に答えよ.

(1)$\displaystyle b_n=\frac{1}{n} \log a_n$とする($n=1,\ 2,\ 3,\ \cdots$).ただし,$\log$は自然対数を表す.このとき,数列$\{b_n\}$の一般項を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)和$\displaystyle \sum_{k=1}^n a_k$と$\displaystyle \sum_{k=1}^n k \log a_k$をそれぞれ求めよ.
静岡大学 国立 静岡大学 2016年 第3問
次の各問に答えよ.

(1)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減,凹凸を調べ,そのグラフの概形をかけ.ただし,$\log$は自然対数を表す.また,等式$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}=0$は証明なしに用いてよい.

(2)$a$を正の実数とする.このとき,$a^x=x^a$を満たす正の実数$x$の個数を調べよ.

(3)定積分$\displaystyle \int_1^{\sqrt{e}} \frac{\log x}{x} \, dx$を求めよ.ただし,$e$は自然対数の底である.
静岡大学 国立 静岡大学 2016年 第1問
$c$は$c>1$を満たす定数とする.数列$\{a_n\}$を次の条件によって定める.
\[ a_1=1,\quad c(a_{n+1})^n=(a_n)^{n+1},\quad a_n>0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の各問に答えよ.

(1)$\displaystyle b_n=\frac{1}{n} \log a_n$とする($n=1,\ 2,\ 3,\ \cdots$).ただし,$\log$は自然対数を表す.このとき,数列$\{b_n\}$の一般項を求めよ.
(2)数列$\{a_n\}$の一般項を求めよ.
(3)和$\displaystyle \sum_{k=1}^n a_k$と$\displaystyle \sum_{k=1}^n k \log a_k$をそれぞれ求めよ.
静岡大学 国立 静岡大学 2016年 第2問
楕円$\displaystyle \frac{x^2}{9}+y^2=1$を$C$とする.また,座標平面上の点$\mathrm{P}(v,\ w)$を通り,単位ベクトル$\overrightarrow{u}=(\alpha,\ \beta)$を方向ベクトルにもつ直線$\ell$の媒介変数$t$による表示を
\[ x=v+\alpha t,\quad y=w+\beta t \]
とする.直線$\ell$は$t=t_1,\ t_2$において楕円$C$とそれぞれ共有点$\mathrm{Q}$,$\mathrm{R}$をもつとする.ただし,$\alpha>0$,$t_1 \leqq t_2$とする.このとき,次の各問に答えよ.

(1)$t_1+t_2$と$t_1t_2$を$v,\ w,\ \alpha,\ \beta$を用いてそれぞれ表せ.
(2)$|\overrightarrow{\mathrm{PQ|}} \cdot |\overrightarrow{\mathrm{PR|}}$を$v,\ w,\ \alpha,\ \beta$を用いて表せ.
(3)$\alpha=\beta$のとき,$\displaystyle |\overrightarrow{\mathrm{QR|}}=\frac{6}{5}$となる点$\mathrm{P}$の軌跡を座標平面上に図示せよ.
静岡大学 国立 静岡大学 2016年 第3問
次の各問に答えよ.

(1)$x>1$のとき$\log x<2 \sqrt{x}-2$を示し,これを用いて$\displaystyle \lim_{x \to \infty} \frac{\log x}{x}$を求めよ.ただし,$\log$は自然対数を表す.
(2)関数$\displaystyle y=\frac{\log x}{x} (x>0)$の増減,凹凸を調べ,そのグラフの概形をかけ.
(3)定積分$I_n (n=1,\ 2,\ 3,\ \cdots)$を以下で定義する.
\[ I_n=\int_1^e \frac{(\log x)^{n-1}}{x^2} \, dx \]
ただし,$e$は自然対数の底である.このとき,次の等式が成り立つことを示せ.
\[ I_{n+1}=-\frac{1}{e}+nI_n \quad (n=1,\ 2,\ 3,\ \cdots) \quad \cdots \quad (*) \]
(4)等式$(*)$を用いて,関数$\displaystyle y=\frac{\log x}{x}$のグラフと$x$軸および直線$x=e$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
大阪教育大学 国立 大阪教育大学 2016年 第3問
以下の問に答えよ.

(1)$\displaystyle \int_0^x \sin^3 t \, dt$を求めよ.
(2)関数$\displaystyle F(x)=\int_0^x (e^{3x}-e^{3t}) \sin^3 t \, dt$を$x$について微分せよ.
(3)$F^\prime(x) \geqq 0$を証明せよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。