タグ「不等号」の検索結果

52ページ目:全4604問中511問~520問を表示)
玉川大学 私立 玉川大学 2016年 第2問
次の$[ ]$を埋めよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$であるとする.$\mathrm{CA}=x$とおくとき,
\[ \cos \angle \mathrm{BAC}=\frac{[ア]+x^2}{[イ]x} \]
である.$\angle \mathrm{BAC}$の最大は,${[ウエ]}^\circ$であり,このとき,$x=[オ]$である.
(2)$1 \leqq x \leqq 100$とする.このとき,方程式$2x+3y=31$をみたす整数の組$(x,\ y)$の個数は,$[カキ]$個で,$x$が最小となる解は,$(x,\ y)=([ク],\ [ケ])$である.
(3)方程式
\[ 2 \sin^3 x+\cos 2x-\sin x=0 \]
を解くと,$n$を任意の整数として
\[ x=\frac{\pi}{[コ]}+2n \pi,\ \frac{\pi}{[サ]}+\frac{1}{[シ]}n \pi \]
となる.
(4)$2$つのベクトルを$\overrightarrow{a}=(t,\ -1)$,$\overrightarrow{b}=(t+\sqrt{2}-1,\ \sqrt{2})$とする.このとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が鋭角になる条件は,
\[ t>[ス],\quad t<-\sqrt{[セ]} \]
であり,鈍角になる条件は,
\[ -\sqrt{[ソ]}<t<[タ] \]
である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+n$で表されるとき,
\[ a_n=[チ]n \]
である.また,
\[ \sum_{k=1}^n (a_k+1)^2=\frac{n}{[ツ]} ([テ]n^2+[トナ]n+[ニヌ]) \]
である.
福岡大学 私立 福岡大学 2016年 第4問
不等式$\displaystyle \left( \frac{1}{2} \right)^{2x}-6 \left( \frac{1}{2} \right)^{x-1}+32 \leqq 0$を解くと$[ ]$である.また,$\displaystyle \left( \frac{1}{24} \right)^{15}$は,小数第$[ ]$位にはじめて$0$でない数字が現れる.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
福岡大学 私立 福岡大学 2016年 第6問
関数$f(x)=2 \cos x-\sin 2x (0 \leqq x \leqq 2\pi)$について,次の問いに答えよ.

(1)関数$f(x)$の極値を求めよ.

(2)定積分$\displaystyle \int_0^{2\pi} |f(x)| \, dx$を求めよ.
福岡大学 私立 福岡大学 2016年 第1問
次の$[ ]$をうめよ.

(1)$2$次関数$y=f(x)$のグラフが$3$点$(-1,\ -1)$,$(2,\ 2)$,$(3,\ -5)$を通るとき,$f(x)=[ ]$であり,$f(x)$の区間$-3 \leqq x \leqq 4$における最小値は$[ ]$である.
(2)$0 \leqq x<2\pi$のとき,関数$f(x)=\cos 2x+2 \cos x$の最大値と最小値の差は$[ ]$であり,$f(x)$が最小値をとる$x$の値は$[ ]$である.
(3)赤球$3$個,白球$4$個,青球$5$個が入っている袋から,$3$個の球を$1$個ずつ取り出すとき,$3$個とも白球である確率は$[ ]$であり,$3$個目が白球である確率は$[ ]$である.ただし,取り出した球はもとに戻さないものとする.
福岡大学 私立 福岡大学 2016年 第2問
次の$[ ]$をうめよ.

(1)方程式$\log_2 (5-x)=\log_8 (x^2-15)$を解くと$[ ]$である.また,変数$a,\ b$が$\log_9 a=(\log_3 b)^2$をみたすとき$\displaystyle \left( \frac{a}{b} \right)^8$の最小値は$[ ]$である.
(2)$a_1=-30$,$a_{n+1}-a_n=-2n+18$で定められる数列$\{a_n\}$について,$a_n>0$である$n$の個数を求めると$[ ]$であり,$\displaystyle S_n=\sum_{k=1}^n a_k$の最大値を求めると$[ ]$である.
福岡大学 私立 福岡大学 2016年 第3問
曲線$C:y=2 \cos^3 x+3 \cos x (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)曲線$C$の増減表を書き,変曲点を求めよ.
(2)曲線$C$と$x$軸,$y$軸で囲まれる部分の面積を求めよ.
東京薬科大学 私立 東京薬科大学 2016年 第1問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$x^2+5x+1=0$のとき,$\displaystyle x+\frac{1}{x}=[$*$ア]$であり,$\displaystyle x^2+\frac{1}{x^2}=[イウ]$である.

(2)$\displaystyle \frac{3}{2}\pi<\theta<2 \pi$かつ$\displaystyle \tan \theta=-\frac{12}{5}$のとき,$\displaystyle \cos \theta=\frac{[$*$エ]}{[オカ]}$,$\displaystyle \sin \theta=\frac{[$*$キク]}{[オカ]}$である.

(3)点$(4,\ 2)$を通り,傾きが$m$の直線$\ell$が,円$C:x^2+y^2=4$に接するとき,$\displaystyle m=[ケ]$,$\displaystyle \frac{[コ]}{[サ]}$である.

(4)容器$\mathrm{A}$には質量パーセント濃度$3 \, \%$の食塩水が$200 \, \mathrm{g}$,容器$\mathrm{B}$には質量パーセント濃度$10 \, \%$の食塩水が$300 \, \mathrm{g}$入っている.今,$\mathrm{A}$,$\mathrm{B}$それぞれから同量ずつ食塩水を取り出し,$\mathrm{A}$から取り出したものを$\mathrm{B}$へ,$\mathrm{B}$から取り出したものを$\mathrm{A}$へ入れたところ,$2$つの容器$\mathrm{A}$,$\mathrm{B}$内の食塩水の質量パーセント濃度が等しくなった.このとき,容器$\mathrm{A}$,$\mathrm{B}$それぞれから取り出した食塩水の量は$[シスセ] \, \mathrm{g}$である.ただし,質量パーセント濃度とは溶液(本問の場合,食塩水)の質量に対する溶質(本問の場合,食塩)の質量の割合を百分率($\%$)で表したものである.
東京薬科大学 私立 東京薬科大学 2016年 第5問
$x$の関数$f(x)$を
\[ f(x)=\left\{ \begin{array}{cl}
ax & (x \leqq 1) \\
(4-a)x+2(a-2) & (1<x) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
と定義する.ただし,$a$は$0<a<1$を満たす実数である.

(1)$y=f(x)$のグラフと,放物線$y=x^2$の共有点の個数は$[ロ]$である.このうち,$a$の値によらない共有点の座標は,$([ワ],\ [ヲ])$,$([ン],\ [あ])$である.ただし,$[ワ]<[ン]$とする.
(2)関数$y=f(x)$のグラフと,放物線$y=x^2$によって囲まれる図形の面積の総和を$S(a)$とすると,
\[ S(a)=\frac{[い]}{[う]}a^3-a+\frac{[え]}{[お]} \]
である.
(3)$S(a)$は$\displaystyle a=\frac{\sqrt{[か]}}{[き]}$のとき,最小値$\displaystyle \frac{[く]-\sqrt{[け]}}{[こ]}$をとる.
東洋大学 私立 東洋大学 2016年 第4問
$xy$平面において,点$\mathrm{P}$が単位円周上の$y \geqq 0$の部分を動くとき,点$\mathrm{P}$から単位円周上の$3$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(-1,\ 0)$,$\displaystyle \mathrm{C} \left( \frac{1}{2},\ \frac{\sqrt{3}}{2} \right)$までの距離の和$\mathrm{PA}+\mathrm{PB}+\mathrm{PC}$を$L$とする.以下,$L$の最大値を求める.点$\mathrm{P}$の座標を$(\cos \theta,\ \sin \theta)$とおき,$L$を$\theta$の式で表すと,


$\displaystyle L=\sqrt{(\cos \theta-[ア])^2+\sin^2 \theta}+\sqrt{(\cos \theta+[イ])^2+\sin^2 \theta}$

$\displaystyle +\sqrt{\left( \cos \theta-\frac{1}{[ウ]} \right)^2+\left( \sin \theta-\frac{\sqrt{[エ]}}{[オ]} \right)^2}$


と表される.整理すると,たとえば,点$\mathrm{P}$が第$2$象限にあるとき,
\[ L=\left( [カ]+\sqrt{[キ]} \right) \sin \frac{\theta}{[ク]}+\cos \frac{\theta}{[ケ]} \]
となり,適当な実数$\alpha$を用いて
\[ L=\sqrt{[コ]+[サ] \sqrt{[シ]}} \sin \left( \frac{\theta}{[ス]}+\alpha \right) \]
と表すことができる.よって,$L$の最大値は,$\sqrt{[セ]}+\sqrt{[ソ]}$である.ただし,$[セ]>[ソ]$とする.
大阪工業大学 私立 大阪工業大学 2016年 第1問
次の空所を埋めよ.

(1)$2$次方程式$2x^2-5x+1=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\alpha+\beta=[ア]$であり,$2(\alpha-2)(\beta-2)=[イ]$である.
(2)$2^6=13 \times [ウ]-1$であり,$2^{100}$を$13$で割ると$[エ]$余る.ただし,$0 \leqq [エ]<13$とする.
(3)$1$辺の長さが$2$の正三角形$\mathrm{OAB}$がある.このとき,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[オ]$である.また,辺$\mathrm{AB}$上の点$\mathrm{P}$が$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}=\frac{5}{2}$を満たすとき,点$\mathrm{P}$は辺$\mathrm{AB}$を$[カ]:1$に内分する.
(4)大小$2$つのさいころを同時に投げ,出た目の数をそれぞれ$a,\ b$とする.このとき,積$ab$が偶数になる目の出方は$[キ]$通りあり,$a+3b$が$5$の倍数になる目の出方は$[ク]$通りある.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。