タグ「不等号」の検索結果

48ページ目:全4604問中471問~480問を表示)
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2+3x+1=0$の$1$つの解$x$について,
\[ x+\frac{1}{x}=[アイ],\quad x^2+\frac{1}{x^2}=[ウ],\quad x^4+\frac{1}{x^4}=[エオ] \]
である.
(2)不等式$|x-3|<a$を満たす整数$x$がちょうど$5$個であるような定数$a$の範囲は$[カ]<a \leqq [キ]$である.
(3)$a,\ b$を整数とする.$a$を$13$で割ると$10$余り,$b$を$13$で割ると$7$余るとき,$a+b$,$ab$を$13$で割ると余りはそれぞれ$[ク]$,$[ケ]$である.また,$a^2b+ab^2-a-b$を$13$で割ると余りは$[コ]$である.
(4)男性$3$人と女性$3$人の$6$人を$2$人ずつ$3$組に分ける方法は$[サシ]$通りあり,そのうち各組が男女のペアになる分け方は$[ス]$通りある.
(5)$\displaystyle \tan \theta=\frac{2}{\sqrt{5}} \left( \pi<\theta <\frac{3}{2} \pi \right)$のとき,
\[ \frac{\cos \theta}{1+\cos \theta}+\frac{\sin \theta}{1+\sin \theta}=-\frac{[アイ]+[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(6)関数$y=f(x)$のグラフを$x$軸方向に$-2$だけ,$y$軸方向に$5$だけ平行移動したグラフは,関数$y=3^x$のグラフと直線$y=x$に関して対称である.このとき,もとの関数は$y=\log_{\mkakko{カ}}(x-[キ])-[ク]$である.
(7)実数$x,\ y$が$2$つの不等式$x^2+y \leqq 4$,$y \geqq 0$を満たすとき,$6x+3y$は$x=[ケ]$,$y=[コ]$のとき最大値$[サシ]$をとり,$x=[スセ]$,$y=[ソ]$のとき最小値$[タチツ]$をとる.
(8)正四面体の面にそれぞれ$1$から$4$の数字のついたさいころを$5$回投げるとき,$4$回以上数字$1$のついた面が下になる確率は$\displaystyle \frac{[テ]}{[トナ]}$である.
北海道薬科大学 私立 北海道薬科大学 2016年 第4問
関数$\displaystyle f(x)=\left( \log_4 \frac{x^2}{4} \right)^4-\log_2 \frac{x^4}{32} (1 \leqq x \leqq 16)$について,次の設問に答えよ.

(1)$\log_2 x$の最大値は$[ア]$,最小値は$[イ]$である.
(2)$f(x)$は
\[ f(x)=\left( \log_2 x+[ウエ] \right)^{\mkakko{オ}}+[カキ] \log_2 x+[ク] \]
と表すことができる.
(3)$f(x)$は

$x=[ケコ]$のとき,最大値$[サシ]$
$x=[ス]$のとき,最小値$[セソ]$

をとる.
大阪歯科大学 私立 大阪歯科大学 2016年 第1問
次の各問の$[ ]$にあてはまる数または式を記入しなさい.

(1)$2016$の約数($1$と$2016$も含める)の個数は$[ ]$である.
(2)一般項が$a_{n+1}=2a_n$(ただし,$a_1=1$)で表される数列の第$n$項までの和は$[ ]$である.
(3)$2^{28}$の桁数は$[ ]$である.ただし,$0.3010<\log_{10}2<0.3011$である.
(4)方程式$2 \cos \theta+\sin \theta=1$の$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$における解$\theta$に対して$\tan \theta=[ ]$である.
大阪歯科大学 私立 大阪歯科大学 2016年 第2問
平面上の放物線$y=f(x)$が$2$点$(0,\ 1)$,$(1,\ 0)$を通る.

(1)$f(x)=ax^2+bx+c$とするとき,係数$a,\ b,\ c$が満たす条件を求めよ.
(2)放物線$y=f(x)$が区間$0<x<1$で$x$軸と交差する.このときの$x$座標を$f(x)$の式とともに求めよ.
(3)$y=f(x)$と$x$軸,$y$軸とで囲まれる図形が$2$つの部分からなり,それぞれの面積が互いに等しいという.$f(x)$を求めよ.
大阪歯科大学 私立 大阪歯科大学 2016年 第3問
平面上に異なる$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{O}$,$\mathrm{P}$があり,$\overrightarrow{\mathrm{AO}}=\overrightarrow{\mathrm{OB}}$とする.以下の問に答えよ.

(1)$\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}=0$をみたす点$\mathrm{P}$の軌跡を求めよ.
(2)$(1)$の$\mathrm{P}$のうち,さらに,$\displaystyle \left( 1-\frac{\sqrt{2}}{2} \right) |\overrightarrow{\mathrm{AO|}}^2 \leqq \overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{AO}} \leqq \frac{3}{2} |\overrightarrow{\mathrm{AO|}}^2$をみたす$\mathrm{P}$の軌跡の長さを求めよ.
北海道薬科大学 私立 北海道薬科大学 2016年 第1問
次の各設問に答えよ.

(1)正の実数$a,\ b$が$\sqrt{a^3}-2 \sqrt{b^3}=(ab)^{\frac{3}{4}}$を満たすとき,$a=\sqrt[\mkakko{ア}]{[イウ]}b$である.
(2)方程式$x^2-\sqrt{6}x+1=\sqrt{2}$の解が$\tan \alpha$,$\displaystyle \tan (-\beta) \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$のとき$\displaystyle \alpha-\beta=\frac{[エ]}{[オ]} \pi$である.
(3)$\displaystyle \left( \frac{1}{8} \right)^x-\left( \frac{1}{4} \right)^{x-1}-\left( \frac{1}{2} \right)^{x-2}+16<0$の解は$[カキ]<x<[クケ]$である.
(4)箱の中に赤玉$5$個,白玉$4$個,黒玉$3$個が入っている.この箱の中から$2$個の玉を同時に取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[コサ]}{[シス]}$である.
龍谷大学 私立 龍谷大学 2016年 第3問
平面上の$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は$|\overrightarrow{\mathrm{OA|}}=2$,$|\overrightarrow{\mathrm{OB|}}=3$,$\displaystyle \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=\frac{3}{2}$を満たす.また,点$\mathrm{C}$は$\overrightarrow{\mathrm{OC}}=k (\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{OB}})$,$\displaystyle |\overrightarrow{\mathrm{OC|}}=\frac{15}{2}$を満たす.ただし,$k>0$である.

(1)$k$を求めなさい.
(2)直線$\mathrm{AB}$上の点$\mathrm{P}$と直線$\mathrm{OB}$上の点$\mathrm{Q}$が$\overrightarrow{\mathrm{OQ}}=\overrightarrow{\mathrm{OC}}+\overrightarrow{\mathrm{OP}}$を満たしている.$|\overrightarrow{\mathrm{OQ|}}$を求めなさい.
東邦大学 私立 東邦大学 2016年 第11問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}$,$\mathrm{B}$があり,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$の成分はそれぞれ$(1,\ 0)$,$(0,\ 1)$である.線分$\mathrm{AB}$を$(1-t):t$に内分する点を$\mathrm{C}$,線分$\mathrm{BO}$を$t:(1-t)$に内分する点を$\mathrm{D}$とする.ただし,$0<t<1$である.$\overrightarrow{\mathrm{OC}}$と$\overrightarrow{\mathrm{AD}}$のなす角を$\theta$とするとき,$\displaystyle -\frac{1}{\sqrt{2}}<\cos \theta<\frac{1}{\sqrt{2}}$となる$t$の値の範囲は$\displaystyle 0<t<\frac{[ア]}{[イ]}$である.
東邦大学 私立 東邦大学 2016年 第15問
$2$つの変量をもつ$100$個のデータ$(x_1,\ y_1)$,$(x_2,\ y_2)$,$\cdots$,$(x_{100},\ y_{100})$が,
\[ \sum_{i=1}^{100} {x_i}^2=500,\quad \sum_{i=1}^{100} {y_i}^2=900,\quad \sum_{i=1}^{100} x_iy_i=500 \]
を満たす場合を考える.$\displaystyle X=\frac{1}{100} \sum_{i=1}^{100} x_i$および$\displaystyle Y=\frac{1}{100} \sum_{i=1}^{100} y_i$とするとき,点$(X,\ Y)$の存在範囲は不等式$\displaystyle \frac{(Y-X)^2}{[シ]}+\frac{X^2}{[ス]} \leqq 1$の表す領域である.また,$|X+Y|$のとり得る値の範囲は$0 \leqq |X+Y| \leqq [セ] \sqrt{[ソ]}$である.
東京女子大学 私立 東京女子大学 2016年 第6問
初項が$3$である数列$\{a_n\}$と,その階差数列$\{b_n\}$が,すべての自然数$n$に対して,条件$a_n-b_n=-1$をみたしている.このとき,以下の設問に答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$a_n \leqq 99999999$となる最大の$n$を求めよ.$\log_{10}2=0.3010$は用いてよい.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。