タグ「不等号」の検索結果

47ページ目:全4604問中461問~470問を表示)
明治大学 私立 明治大学 2016年 第1問
次の空欄$[オ]$に当てはまるものを解答群の中から選べ.それ以外の空欄には,当てはまる$0$から$9$までの数字を入れよ.

(1)$x \neq 7$とする.このとき,不等式
\[ -x^2-x+20>\frac{140}{7-x} \]
を満たす$x$の値の範囲は,
\[ -[ア]<x<[イ],\quad [ウ]<x<[エ] \]
である.
(2)$q$を正の実数とするとき,
\[ \lim_{s \to 1} \frac{q^s-q}{s-1}=[オ] \]
である.
$a,\ b,\ c$を実数とする.$x>0$に対して,関数$f(x)$を
\[ f(x)=\lim_{n \to \infty} \left\{ n(x^{1+\frac{1}{n}}-x)-\frac{ax-2b+x^{n+1}-cx^n}{4+x^n} \right\} \]
と定義する.$f(x)$が$x=1$で連続であるとき,
\[ a-[カ]b+[キ]c=[ク] \]
となる.
オの解答群(ただし,$\log$は自然対数,$e$はその底とする)

\begin{tabular}{llllllllll}
$\nagamarurei 0$ & & $\nagamaruichi 1$ & & $\nagamaruni q$ & & $\nagamarusan q^{-1}$ & & $\nagamarushi e^q$ \\
$\nagamarugo e^{-q}$ & & $\nagamaruroku \log q$ & & $\nagamarushichi -\log q$ & & $\nagamaruhachi q \log q$ & & $\nagamarukyu -q \log q$
\end{tabular}
明治大学 私立 明治大学 2016年 第3問
放物線$C:y=-x^2+ax$($a$は正の定数)と直線$\ell:y=mx+n$が$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.$\mathrm{A}$,$\mathrm{B}$の$x$座標を$\alpha,\ \beta$とすると,$0<\alpha<\beta<2a$を満たしている.$x=0$,$C$,$\ell$で囲まれた図形の面積を$T_1$,$C$と$\ell$で囲まれた図形の面積を$T_2$,$x=2a$,$C$,$\ell$で囲まれた図形の面積を$T_3$とする.このとき,
\[ T_2=T_1+T_3 \]
が満たされるとする.以下の各設問に答えよ.

(1)$T_2=T_1+T_3$から,$a,\ m,\ n$の間に関係式
\[ [ ]=0 \]
が成り立つ(もっとも簡潔な式で書くこと).
(2)$T_2=T_1+T_3$を満たす直線$\ell$は$m,\ n$によらず定点$[ ]$を通る.この定点を$a$を用いて表せ.
(3)$T_2$の値が最小となるのは直線$\ell$が$y=[ ]$のときであり,そのとき$T_2$の値は$[ ]$である.
(4)$(3)$のとき$\alpha,\ \beta$の値は
\[ \alpha=[ ]a,\quad \beta=[ ]a \]
である.
明治大学 私立 明治大学 2016年 第3問
関数$f(x)=x^4-4x^3-2x^2+14x+13$について考える.

(1)$a,\ b,\ c$が$a<b<c$を満たす定数で,関数$y=f(x)$は$x=a$と$x=c$のとき極小値をとり,$x=b$のとき極大値をとる.このとき,$a^2+b^2+c^2=[ア][イ]$である.
(2)直線$y=2x+4$を$\ell$とし,直線$\ell$に平行な直線$y=2x+p$を$m$とする.ただし,$p$は定数である.曲線$y=f(x)$と直線$\ell$は異なる$2$点で接している.さらに,曲線$y=f(x)$と直線$m$が異なる$3$個の共有点をもつとき,$p=[ウ][エ]$である.
また,$\alpha,\ \beta,\ \gamma$が$\alpha<\beta<\gamma$を満たす定数で,曲線$y=f(x)$と直線$\ell$の異なる$2$つの接点の$x$座標を$\alpha,\ \gamma$とし,曲線$y=f(x)$と直線$m$の接点の$x$座標を$\beta$とする.直線$m$の$\alpha \leqq x \leqq \beta$の部分と曲線$y=f(x)$,および直線$x=\alpha$で囲まれた部分の面積は$\displaystyle \frac{[オ][カ][キ]}{[ク][ケ]}$である.
明治大学 私立 明治大学 2016年 第3問
$n$と$k$を$n>k$を満たす自然数とする.$n$チームが参加するサッカーの大会がある.この大会では,全てのチームが$k$回の試合を行う.但し,その$k$試合の対戦相手は,全て異なるとする.このとき,次の問に答えよ.

(1)$n=4,\ k=2$の場合の大会が,何通りあるかもとめよ.
(2)$n=6,\ k=3$のとき,$1$つの大会の試合の総数をもとめよ.
(3)一般に,この大会が成立するためには,$n$か$k$のどちらかが,偶数でなければならないことを示せ.
(4)各試合の両チームの得点を全て合計し,試合数で割った値を,その大会における$1$試合の平均得点と呼ぶことにする.
$n=9$のとき,各チームが$k$試合行う大会における,$1$試合の平均得点が,$\displaystyle \left( \frac{1}{27}k^2-\frac{7}{9}k+5 \right)$点であったとする.$1$つの大会における総得点が,もっとも多くなる$k$をもとめよ.
学習院大学 私立 学習院大学 2016年 第1問
次の問いに答えよ.

(1)$3$つのさいころを同時に投げて,出た目の和を$S$とする.$S \geqq 13$となる確率を求めよ.
(2)$\displaystyle \cos x+\sin x=\frac{\sqrt{2}}{3}$であるとき,$\displaystyle \tan x+\frac{1}{\tan x}$の値を求めよ.
学習院大学 私立 学習院大学 2016年 第2問
$a$を実数として,$2$つの不等式

$x^2-y^2 \geqq 0 \qquad\qquad\qquad\quad\, \cdots\cdots (\mathrm{A})$
$(x-a-1)^2+y^2 \leqq a^2 \qquad \cdots\cdots (\mathrm{B})$

を考える.

(1)平面上で$(\mathrm{A})$の定める領域を図示せよ.
(2)実数$x,\ y$について,$(\mathrm{A})$が成り立つことが$(\mathrm{B})$が成り立つことの必要条件となるような$a$の範囲を求めよ.
獨協医科大学 私立 獨協医科大学 2016年 第1問
次の問いに答えなさい.

(1)$m$を実数の定数とする.$x$についての$2$つの$2$次不等式

$x^2-4x+3<0 \qquad\hspace{2.65mm} \cdots\cdots \ ①$
$x^2-2mx-8m^2<0 \cdots\cdots \ ②$

を考える.$①$の解は
\[ [ア]<x<[イ] \]
である.
$①$を満たすすべての実数が$②$を満たすような$m$の値の範囲は
\[ m \leqq \frac{[ウエ]}{[オ]}, \frac{[カ]}{[キ]} \leqq m \]
である.
また,$①,\ ②$をともに満たす実数$x$が存在しないような$m$の値の範囲は
\[ \frac{[クケ]}{[コ]} \leqq m \leqq \frac{[サ]}{[シ]} \]
である.
(2)$4$進法で表された$123_{(4)}$を$10$進法で表すと,$[スセ]$である.
整数$n$を$4$進法で表したとき,$3$桁になった.このとき,$n$のとり得る値の範囲を$10$進法で表すと
\[ [ソタ] \leqq n \leqq [チツ] \]
である.
$10$進法で表された$3^{20}$を$4$進法で表すと,その桁数は$[テト]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
獨協医科大学 私立 獨協医科大学 2016年 第2問
袋の中に,$1,\ 2,\ \cdots,\ m$($m$は$2$以上の整数)の数字が書かれた球がそれぞれ$n$個ずつ($n$は正の整数),合計$mn$個入っている.この袋の中から同時に$2$個の球を取り出す.取り出した球に書かれている数字が$k,\ l (k \geqq l)$のとき,$x=k$,$y=l$とする.

(1)$m=6,\ n=3$のとき,$x-y=3$となる確率は$\displaystyle \frac{[ア]}{[イウ]}$である.
(2)$2(x-y) \geqq m$となる確率を$p$とする.


$m=18$,$n=3$のとき,$\displaystyle p=\frac{[エオ]}{[カキ]}$である.

$m$が偶数,$n=3$のとき,$\displaystyle p=\frac{[ク]m+[ケ]}{[コサ]m-[シ]}$である.


(3)$2(x-y)<m$となる確率は,$m$が偶数のとき
\[ \frac{[ス]mn-[セ]n-[ソ]}{[タ](mn-[チ])} \]
である.
獨協医科大学 私立 獨協医科大学 2016年 第5問
$xy$平面上の放物線$y=x^2$の$0 \leqq x \leqq 1$に対応する部分の長さを$L$とする.$L$の値を次のようにして求めよう.$L$は定積分
\[ L=\int_0^1 \sqrt{1+[ア]x^2} \, dx \]
で定まる.この定積分を計算するために$\displaystyle x=\frac{e^t-e^{-t}}{4}$として,置換積分を行う.このとき
\[ \frac{dx}{dt}=\frac{e^t+e^{-t}}{4} \]
であり
\[ \sqrt{1+[ア]x^2}=\frac{e^t+e^{-t}}{[イ]} \]
である.

また,$\displaystyle \frac{e^t-e^{-t}}{4}=1$となる$t$の値を$\alpha$とすると,$x$が$0 \to 1$と変化するとき,$t$は$[ウ] \to \alpha$と変化するので,$L$を定める定積分は
\[ L=\frac{1}{[エ]} \int_{\mkakko{ウ}}^\alpha (e^t+e^{-t})^{\mkakko{オ}} \, dt \]
となる.ここで$X=e^\alpha$とおくと,$X$は$2$次方程式
\[ X^2-[カ]X-[キ]=0 \]
の解である.$X>0$なので
\[ X=[ク]+\sqrt{[ケ]} \]
である.これを用いて$\alpha$の値を定め,$L$の値を計算すると
\[ L=\frac{\sqrt{[コ]}}{[サ]}+\frac{1}{[シ]} \log \left( [ス]+\sqrt{[セ]} \right) \]
である.
明治大学 私立 明治大学 2016年 第3問
次の空欄に当てはまる$0$から$9$までの数字を入れよ.ただし,空欄$[サシ]$は$2$桁の数をあらわす.

(1)$k$を自然数とすると
\[ \int_0^\pi \sin^k x \cos x \, dx=[ア] \]
である.
(2)直線$y=\sqrt{3}x$を$\ell$とし,曲線$y=\sqrt{3}x+\sin^2 x$を$C$とする.直線$\ell$上に点$\mathrm{A}$をとり,点$\mathrm{A}$において直線$\ell$と直交する直線を$L$とする.関数$y=\sqrt{3}x+\sin^2 x$は$x$に関する単調増加関数であるので,直線$L$と曲線$C$の共有点は$1$点のみである.その共有点を$\mathrm{B}(t,\ \sqrt{3}t+\sin^2 t)$とする.点$\mathrm{A}$と点$\mathrm{B}$の距離を$h$とおくと,
\[ h=\frac{1}{[イ]} \sin^2 t \]
となる.また,原点$\mathrm{O}$と点$\mathrm{A}$の距離を$p$とする.点$\mathrm{A}$の$x$座標が$0$以上であるときは
\[ p=[ウ]t+\frac{\sqrt{[エ]}}{[オ]} \sin^2 t \]
となる.この等式の右辺を$f(t)$とおく.
$0 \leqq x \leqq \pi$の範囲で曲線$C$と直線$\ell$で囲まれた図形を考え,その図形を直線$\ell$の周りに$1$回転させてできる立体の体積を$V$とすると,$\displaystyle V=\pi \int_0^{\mkakko{カ} \pi} h^2 \, dp$となる.ここで,$p=f(t)$とおいて置換積分すれば,
\[ V=\frac{\pi}{[キ]} \int_0^{\pi} \sin^4 t \, dt \]
が成り立つ.$\displaystyle \int_0^{\pi} \sin^4 t \, dt=\frac{[ク]}{[ケ]} \pi$より,$\displaystyle V=\frac{[コ]}{[サシ]} \pi^2$である.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。