タグ「不等号」の検索結果

43ページ目:全4604問中421問~430問を表示)
青山学院大学 私立 青山学院大学 2016年 第1問
小数第$1$位までで表される正数$X,\ Y$に対して,$m,\ n$を
\[ X-0.4 \leqq m \leqq X+0.5,\quad Y-0.4 \leqq n \leqq Y+0.5 \quad \cdots \quad ① \]
を満たす$0$以上の整数とする.このとき,次の問に答えよ.

(1)$X=2.6$のとき$m=[$1$]$であり,$Y=4.3$のとき$n=[$2$]$である.
(2)関係式$①$を満たす$X,\ Y,\ m,\ n$に対して,さらに関係式
\[ \left\{ \begin{array}{lll}
5X-4Y=22.2 & \cdots & ② \\
2m+3n=26 & \cdots & ③
\end{array} \right. \]
が成立するという.$X,\ Y,\ m,\ n$を求めよう.
関係式$③$を満たす$0$以上の整数$m,\ n$のうちで,対応する$X,\ Y$が関係式$②$を満たすのは$m=[$3$]$,$n=[$4$]$である.このとき,
\[ X=[$3$]+\frac{x}{10},\quad Y=[$4$]+\frac{y}{10} \]
とすると,$5x-4y=[$5$][$6$]$が成り立つ.
以上のことから,$x=[$7$]$,$y=[$8$][$9$]$となる.
青山学院大学 私立 青山学院大学 2016年 第4問
正方形$\mathrm{ABCD}$を考える.時刻$0$で点$\mathrm{P}$は頂点$\mathrm{A}$にあり,$1$秒ごとにそのときにいる頂点から辺で結ばれた他の$2$頂点にそれぞれ確率$\displaystyle \frac{1}{4}$で,辺で結ばれていない頂点に確率$\displaystyle \frac{1}{2}$で移動する.$n \geqq 1$に対して,$n$秒後に点$\mathrm{P}$が頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$にある確率をそれぞれ$a_n,\ b_n,\ c_n,\ d_n$とする.

(1)$a_2,\ b_2,\ c_2,\ d_2$の値を求めよ.
(2)$a_{n+1},\ b_{n+1},\ c_{n+1},\ d_{n+1}$を$a_n,\ b_n,\ c_n,\ d_n$を用いて表せ.
(3)$a_n+c_n$の値を求めよ.
(4)$p_n=a_n-c_n$とおくとき,$p_n$を$n$を用いて表せ.
(5)$a_n$を$n$を用いて表せ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第2問
次の連立不等式を解け.
\[ \left\{ \begin{array}{l}
5x+3 \geqq 3x+1 \\
x-2>4x-11
\end{array} \right. \]
倉敷芸術科学大学 私立 倉敷芸術科学大学 2016年 第3問
$0 \leqq \theta<2\pi$のとき,関数$y=\cos^2 \theta+2 \sin \theta$の最大値,最小値を求めよ.また,そのときの$\theta$の値を求めよ.
立教大学 私立 立教大学 2016年 第4問
$c$を$0<c<1$を満たす実数とする.関数
\[ F(x)=\int_0^x (t-c) \log \left( t^2-t+\frac{1}{2} \right) \, dt \]
について,次の問いに答えよ.

(1)$F(x)$の導関数$F^\prime(x)$を求めよ.
(2)$F^\prime(x)<0$となる$x$の値の範囲を$c$を用いて表せ.
(3)$F(x)$が極大値をとる$x$の値と極小値をとる$x$の値をそれぞれ求めよ.
(4)$\displaystyle c=\frac{1}{2}$のとき,$x \geqq 0$の範囲における$F(x)$の最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
$xy$平面上を動く中心$(0,\ p)$,半径$r (0<r<p)$の円$C_1$が,放物線$C_2:y=x^2$と異なる$2$点で,直線$\ell:y=q (q>p)$と$1$点で接している(直線$\ell$は円$C_1$と連動して動くものとする).ここで$2$つの曲線が接するとは,交点における接線が一致することを意味する.このとき
\[ p=[$36$]r^2+\frac{[$37$]}{[$38$]} \]
であり,$\displaystyle r>\frac{[$39$]}{[$40$]}$を満たす.また,放物線$C_2$と直線$\ell$の交点の$x$座標は
\[ \pm \left( [$41$]r+\frac{[$42$]}{[$43$]} \right) \]
である.このとき,放物線$C_2$と直線$\ell$で囲まれた領域の面積は
\[ \frac{[$44$]}{[$45$]}r^3+[$46$]r^2+[$47$]r+\frac{[$48$]}{[$49$]} \]
である.
立教大学 私立 立教大学 2016年 第3問
$a$を$\displaystyle 0 \leqq a \leqq \frac{1}{2}$を満たす実数とする.このとき,関数$f(x)=|x^2-2ax|$について,次の問いに答えよ.

(1)$\displaystyle a=\frac{1}{4}$のときの,$0 \leqq x \leqq 1$における$f(x)$の最大値を求めよ.
また,$\displaystyle a=\frac{4}{9}$のときの,$0 \leqq x \leqq 1$における$f(x)$の最大値を求めよ.
(2)$f(a)=f(1)$となる$a$の値を$A$とする.このとき,$A$を求めよ.
(3)$0 \leqq a \leqq A$とする.$0 \leqq x \leqq 1$における$f(x)$の最大値を$a$を用いて表せ.
(4)$\displaystyle A \leqq a \leqq \frac{1}{2}$とする.$0 \leqq x \leqq 1$における$f(x)$の最大値を$a$を用いて表せ.
(5)$0 \leqq x \leqq 1$における$f(x)$の最大値を$a$の関数として,$M(a)$で表す.$\displaystyle 0 \leqq a \leqq \frac{1}{2}$における$M(a)$の最小値を求めよ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[サ]$に当てはまる数または式を記入せよ.

(1)$U=\{1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 7,\ 8,\ 9\}$を全体集合とする.$A$を$6$の正の約数がつくる部分集合とし,$A$の補集合を$\overline{A}$とする.$B$を$9$の正の約数がつくる部分集合とし,$B$の補集合を$\overline{B}$とする.$\overline{A} \cup B$の要素を書き並べて表すと$[ア]$であり,$A \cap \overline{B}$の要素を書き並べて表すと$[イ]$である.
(2)等式$\displaystyle f(x)=-6x+2 \int_{-1}^2 f(t) \, dt$を満たす関数$f(x)$は,$f(x)=[ウ]$である.
(3)$2$次方程式$x^2+2ax+a=0$が$x=-a$を解として持つときの$a$の値をすべて求めると,$a=[エ]$である.
(4)$2$進法で表された数$1101011_{(2)}$を$10$進法で表すと$[オ]$である.
(5)複素数$x=a+bi (a>0,\ b>0)$が$x^4=-9$を満たすとき,定数$a=[カ]$,$b=[キ]$である.ただし,$i$は虚数単位とする.
(6)$0 \leqq \theta \leqq \pi$の範囲で$\cos 2\theta-\cos \theta=0$を満たす$\theta$をすべて求めると,$\theta=[ク]$である.
(7)不等式$\displaystyle -2<\log_{8}x<\frac{5}{3}$を解くと,$\displaystyle \frac{1}{[ケ]}<x<[コ]$である.ただし,空欄に入る数は整数である.
(8)$p,\ q$を実数とし,$q>4$とする.座標平面上の$4$点$\mathrm{A}(p,\ q)$,$\mathrm{B}(0,\ 4)$,$\mathrm{C}(1,\ -1)$,$\mathrm{D}(5,\ 3)$を頂点とする平行四辺形$\mathrm{ABCD}$において$\overrightarrow{\mathrm{DC}}$と$\overrightarrow{\mathrm{DA}}$のなす角を$\theta$とするとき,$\cos \theta=[サ]$である.
早稲田大学 私立 早稲田大学 2016年 第6問
関数$f(x)$を
\[ f(x)=\int_x^{x+1} (1+|t|)(1+|t-1|) \, dt \]
と定義する.

(1)$x \leqq -1$のとき,
\[ f(x)=[ネ]x^2+[ノ]x+\frac{[ハ]}{[ヒ]} \]
である.
(2)$x$が実数全体を動くとき,関数$f(x)$は,$x=[フ]$のとき最小となり,その値は$\displaystyle \frac{[ヘ]}{[ホ]}$である.
立教大学 私立 立教大学 2016年 第2問
図のように辺の長さが$a$と$b$である長方形があり,$ab=1$とする.この長方形の四隅から,一辺の長さが$\displaystyle c \left( 0<c<\frac{1}{2} \right)$の正方形を切り取り,残った部分を組み立ててできる直方体の容器の容積を$V$とする.このとき,次の問いに答えよ.
(図は省略)

(1)$\displaystyle 0<c<\frac{1}{2}$を満たす$c$に対して,$a$と$b$が変化するとき,$a$の値の範囲を$c$を用いて表せ.
(2)容積$V$を$a$と$c$を用いて表せ.
(3)$a$が$(1)$で求めた範囲にあるとき,$V$を最大にする$a$の値と,そのときの$V$の値を$c$を用いて表せ.
(4)$(3)$で求めた$V$の値を$c$の関数として$M(c)$で表す.このとき,$M(c)$を最大にする$c$の値と,そのときの$M(c)$の値を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。