タグ「不等号」の検索結果

42ページ目:全4604問中411問~420問を表示)
津田塾大学 私立 津田塾大学 2016年 第3問
$m$を自然数とし,整数$x,\ y$は$x^3+y^3=m$を満たすとする.

(1)$0<x^2-xy+y^2 \leqq m$が成り立つことを示せ.

(2)$\displaystyle y^2 \leqq \frac{4}{3}m$が成り立つことを示せ.

(3)$x^3+y^3=19$を満たす整数の組$(x,\ y)$をすべて求めよ.ただし,$(2)$の結果を利用してもよい.
津田塾大学 私立 津田塾大学 2016年 第1問
次の問に答えよ.

(1)$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$のとき,
\[ \sin \left( x+\frac{\pi}{3} \right)+\cos \left( x-\frac{\pi}{3} \right) \]
の最大値と最小値を求めよ.
(2)空間内の$2$点$(-2,\ 5,\ -1)$,$(2,\ 1,\ 3)$を通る直線の,$x \geqq 0$,$y \geqq 0$,$z \geqq 0$を同時に満たす部分の長さを求めよ.
(3)$\mathrm{TSUDAJUKU}$という単語に使われている$9$文字から$4$文字を選び順列を作る.$\mathrm{U}$という文字がちょうど$2$文字含まれる順列は何通りあるか.
津田塾大学 私立 津田塾大学 2016年 第3問
$a$を正の定数とし,放物線$C:y=ax^2$上の点$\mathrm{P}(t,\ at^2)$における接線を$\ell_1$とする.ただし,$t>0$である.

(1)$\ell_1$と$x$軸との交点を通り$\ell_1$と直交する直線を$\ell_2$とする.$\ell_2$は$\mathrm{P}$によらない定点を通ることを示せ.
(2)$x$軸に関して$\ell_1$と対称な直線を$\ell_3$とする.$\ell_3$と$C$の$2$つの交点のうち$x$座標が大きい方を$\mathrm{Q}$,$\mathrm{Q}$から$x$軸に下ろした垂線の足を$\mathrm{R}$とするとき,$C$と直線$\mathrm{QR}$と$x$軸とで囲まれた図形の面積を求めよ.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[コ]$に当てはまる数または式を記入せよ.

(1)$x,\ y$を実数とするとき,座標平面上の点$\mathrm{P}(3 \sin x+5 \sin y,\ 3 \cos x+5 \cos y)$と原点との距離の最小値は$[ア]$であり,最大値は$[イ]$である.
(2)$2016x+401y=1$を満たす整数$x,\ y$で$0<x<401$となるのは,$x=[ウ]$,$y=[エ]$のときである.
(3)$0 \leqq x \leqq 1$のとき,関数$f(x)=\sqrt{x}+2 \sqrt{1-x}$は,$x=[オ]$において最大値$[カ]$をとる.
(4)$\mathrm{O}$を原点とする座標空間内の$2$点$\mathrm{A}(4,\ -1,\ 3)$,$\mathrm{B}(2,\ 1,\ 1)$を通る直線と$xy$平面の交点を$\mathrm{C}$とするとき,$\mathrm{C}$の座標は$[キ]$である.また,直線$\mathrm{AB}$と直線$\mathrm{OC}$のなす角を$\displaystyle \theta \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right)$とすると,$\cos \theta=[ク]$である.
(5)袋の中に赤玉と白玉が合わせて$8$個入っている.この袋の中から$2$個の玉を同時に取り出すとき,取り出した玉が両方とも白である確率が$\displaystyle \frac{5}{14}$である.このとき,袋の中の白玉は$[ケ]$個である.また,取り出した玉を元に戻し,この袋からあらたに$2$個の玉を同時に取り出すとき,赤玉と白玉が$1$個ずつである確率は$[コ]$である.
津田塾大学 私立 津田塾大学 2016年 第4問
\begin{mawarikomi}{68mm}{
(図は省略)
}
座標平面の$x$軸上に直線$\ell$がある.点$\mathrm{O}^\prime$を中心とする半径$1$の円$C$が直線$\ell$に接しながら$x$軸の負の方向から正の方向へ,すべらずに転がっている.円$C$は$\mathrm{O}^\prime$のまわりに毎秒$1$ラジアンの割合で回転しているとする.

ある時刻に点$\mathrm{O}^\prime$が点$(0,\ 1)$に達し,同時に直線$\ell$が座標平面の原点$\mathrm{O}$を中心として毎秒$1$ラジアンの割合で正の向きに回転を始めた.その時刻に原点にある円$C$上の点を$\mathrm{P}$とする.円$C$はその後も$\ell$に接しながら同じように転がり続けるとする.

\end{mawarikomi}

(1)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における円$C$と直線$\ell$の接点$\mathrm{Q}$の座標を求めよ.
(2)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における点$\mathrm{P}$の座標を求めよ.
(3)$\ell$が動き始めてから$\displaystyle \frac{\pi}{2}$秒後までに点$\mathrm{P}$が描く曲線の長さを求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.また設問$(3)$に答えなさい.

時間$t$とともに座標平面上を動く点$\mathrm{P}(t)$は次の条件$(ⅰ)$をみたすとする.

(i) $\mathrm{P}(t)$は原点をとおらず,その偏角$\theta(t)$および原点からの距離$r(t)$は$t$について微分可能,かつ$r(0)=1$であり,さらに$\theta^\prime(t)=1$が成り立つ.



(1)動点$\mathrm{P}(t)$の座標を$(x(t),\ y(t))$とし,時刻$t$における$\mathrm{P}(t)$の速度ベクトル$\displaystyle \overrightarrow{v}(t)=\left( \frac{dx}{dt},\ \frac{dy}{dt} \right)$とベクトル$\overrightarrow{b}(t)=(\cos \theta (t),\ \sin \theta (t))$のなす角を$\alpha (t)$とする.このとき$\cos \alpha (t)$を$r(t)$を用いて表すと$\cos \alpha (t)=[あ]$である.
(2)動点$\mathrm{P}(t)$がさらに次の条件$(ⅱ)$をみたすとする.

(ii) すべての$t$に対して$\displaystyle \alpha (t)=\frac{\pi}{4}$である.

このとき$r(t)=[い]$である.
(3)条件$(ⅰ),\ (ⅱ)$をみたす$2$つの動点$\mathrm{P}_1(t)$,$\mathrm{P}_2(t)$の間に次の条件$(ⅲ)$が成り立つとする.ただし動点$\mathrm{P}_1(t)$,$\mathrm{P}_2(t)$それぞれの偏角を$\theta_1(t)$,$\theta_2(t)$,原点からの距離を$r_1(t)$,$r_2(t)$とし,速度ベクトルを$\overrightarrow{v_1}(t)$,$\overrightarrow{v_2}(t)$とする.

(iii) すべての$t$に対してベクトル$\overrightarrow{v_1}(t)$とベクトル$\overrightarrow{v_2}(t)$は垂直である.

このとき時刻$s$から$u$の間に動点$\mathrm{P}_2(t)$がその軌道に沿って動く道のりを$l(s,\ u)$とすると
\[ l(s,\ u)=|\overrightarrow{\mathrm{P|_1(u) \mathrm{P}_2(u)}}-|\overrightarrow{\mathrm{P|_1(s) \mathrm{P}_2(s)}} \]
が成り立つことを示しなさい.ただし$s<u$とする.
京都薬科大学 私立 京都薬科大学 2016年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[コ]$においては,$[コ]$につづくかっこ内の選択肢から適切なものを$\mathrm{A}$か$\mathrm{B}$の記号で答えよ.

(1)$2$つの円$x^2+y^2=1$,$(x-2)^2+y^2=R^2 (R>0)$が異なる$2$つの交点を持つのは$[ア]<R<[イ]$が成立するときである.このとき,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(2,\ 0)$とおき,交点の$1$つを$\mathrm{P}$とすると
\[ \cos \angle \mathrm{OPA}=[ウ] \]
が成立するので,$\angle \mathrm{OPA}={90}^\circ$となるのは$R=[エ]$のときである.
(2)$x$の$2$次方程式$x^2-4x \sin \theta+4+\sqrt{2}-(2+2 \sqrt{2}) \cos \theta=0 (0 \leqq \theta<2\pi)$が異なる$2$つの実数解を持つような$\theta$の範囲は,$[オ]<\theta<[カ]$および$[キ]<\theta<[ク]$である.
(3)$p$と$q$を正の整数とするとき,$x$の$2$次方程式$x^2-2 \sqrt{p}x+q=0$は異なる$2$つの実数解を持つとする.これらの解を$\alpha$と$\beta$で表すとき,$r=|\alpha-\beta|$と$p,\ q$の間には,関係式$r^2=[ケ]$が成り立つ.したがって,もし$r$が整数ならば,$r$は$[コ]$($\mathrm{A}:$偶数,$\mathrm{B}:$奇数)である.このとき,$2$次方程式の解を$q$と$r$を用いてあらわすと$x=[サ] \pm [シ]$となる.
(4)$1$つのサイコロを$2$回続けて投げるとき,$1$回目に出る目を$a$,$2$回目に出る目を$b$とし,$x$の$2$次方程式$x^2-ax+b=0 \ \cdots\ ①$を考える.$2$次方程式$①$が実数解を持たない確率は$[ス]$である.$2$次方程式$①$が実数解を持つとき,それが重解である条件付き確率は$[セ]$である.$2$次方程式$①$の解が$2$つとも自然数になる確率は$[ソ]$である.
(5)$3^{10}={10}^x$となる$x$は$[タ]$である.よって,$3^{10}$は$[チ]$桁の$10$進数である.同様の考え方で$5^{10}$を$9$進数で表すと,$[ツ]$桁である.ただし,$\log_{10}3=0.4771$,$\log_{10}5=0.6990$とする.
京都薬科大学 私立 京都薬科大学 2016年 第3問
次の$[ ]$にあてはまる式を記入せよ.

空間の異なる$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$に対して,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とおく.線分$\mathrm{AB}$を$k:l$に内分する点を$\mathrm{C}$とおくと
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{a}+[イ] \overrightarrow{b} \]
と表される.また,線分$\mathrm{AB}$を$m:n (m>n)$に外分する点を$\mathrm{D}$とおくと
\[ \overrightarrow{\mathrm{OD}}=[ウ] \overrightarrow{a}+[エ] \overrightarrow{b} \]
と表される.さらに,$pm-qn \neq 0$をみたす正の数$p,\ q$について,$\overrightarrow{\mathrm{OA}^\prime}=p \overrightarrow{a}$,$\overrightarrow{\mathrm{OB}^\prime}=q \overrightarrow{b}$をみたす$2$点$\mathrm{A}^\prime$,$\mathrm{B}^\prime$をとり,直線$\mathrm{OC}$,$\mathrm{OD}$がそれぞれ直線$\mathrm{A}^\prime \mathrm{B}^\prime$と交わる点を$\mathrm{C}^\prime$,$\mathrm{D}^\prime$とおくと$\overrightarrow{\mathrm{OC}^\prime}$,$\overrightarrow{\mathrm{OD}^\prime}$はそれぞれ
\[ \overrightarrow{\mathrm{OC}^\prime}=[オ] \overrightarrow{a}+[カ] \overrightarrow{b},\quad \overrightarrow{\mathrm{OD}^\prime}=[キ] \overrightarrow{a}+[ク] \overrightarrow{b} \]
と表される.よって,$\mathrm{C}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[ケ]:[コ]$に内分する点で,$\mathrm{D}^\prime$は線分$\mathrm{A}^\prime \mathrm{B}^\prime$を$[サ]:[シ]$に外分する点である.
ここで,点$\mathrm{C}$が線分$\mathrm{AB}$を内分する比の値$\displaystyle \frac{k}{l}$と,点$\mathrm{D}$が線分$\mathrm{AB}$を外分する比の値$\displaystyle \frac{m}{n}$について,これら$2$つの比の商を
\[ c(\mathrm{A},\ \mathrm{B},\ \mathrm{C},\ \mathrm{D})=\frac{\displaystyle\frac{k}{l}}{\displaystyle\frac{m}{n}}=\frac{kn}{lm} \]
とおくとき,点$\mathrm{C}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を内分する比の値と点$\mathrm{D}^\prime$が線分$\mathrm{A}^\prime \mathrm{B}^\prime$を外分する比の商$c(\mathrm{A}^\prime,\ \mathrm{B}^\prime,\ \mathrm{C}^\prime,\ \mathrm{D}^\prime)$は,$k,\ l,\ m,\ n$を用いると$[ス]$と表せる.
京都薬科大学 私立 京都薬科大学 2016年 第4問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$1$から$6$までの数字が$1$つずつ書かれた赤球が$6$個入った袋$\mathrm{A}$と,$1$から$6$までの数字が$1$つずつ書かれた白球が$6$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$k$となる場合の数を$f(k)$で表す.このとき,$xy$平面上の点$(k,\ f(k))$は,直線$x=[ア]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[イ]$である.
(2)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個入った袋$\mathrm{A}$と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$l$となる場合の数を$g(l)$で表す.このとき,$xy$平面上の点$(l,\ g(l))$は,直線$x=[ウ]$に関して対称な$2$直線上に並び,これらの対称な$2$直線と$x$軸で囲まれた部分の面積は$[エ]$である.
(3)$N$を$2$以上の整数とする.$1$から$N$までの数字が$1$つずつ書かれた赤球が$N$個と,$1$から$N$までの数字が$1$つずつ書かれた白球が$N$個入った袋$\mathrm{A}$と,$1$から$2N$までの数字が$1$つずつ書かれた青球が$2N$個入った袋$\mathrm{B}$がある.それぞれの袋から無作為に$1$個ずつ球を取り出し,それらの球に書かれた数の合計が$m$となる場合の数を$h(m)$で表す.このとき,$xy$平面上の点$(m,\ h(m))$が並ぶ直線の方程式は以下のようになる.


\qquad \; \!\!$2 \leqq m \leqq [オ]$の$(m,\ h(m))$について,$y=[カ]$
$[オ] \leqq m \leqq [キ]$の$(m,\ h(m))$について,$y=[ク]$
$[キ] \leqq m \leqq [ケ]$の$(m,\ h(m))$について,$y=[コ]$


これらの$3$直線と$x$軸で囲まれた部分の面積は$[サ]$である.
青山学院大学 私立 青山学院大学 2016年 第5問
関数$y=xe^{-x} (x \geqq 0)$のグラフにおいて,$y$座標の値が最大となる点を$\mathrm{A}$,変曲点を$\mathrm{B}$とし,点$\mathrm{B}$から$x$軸に下ろした垂線と$x$軸との交点を$\mathrm{C}$とする.

(1)点$\mathrm{A}$,$\mathrm{B}$の座標を求め,関数$y=xe^{-x} (x \geqq 0)$のグラフをかけ.ただし,$\displaystyle \lim_{x \to \infty} xe^{-x}=0$であることを用いてよい.
(2)線分$\mathrm{OA}$,$\mathrm{OB}$および関数$y=xe^{-x}$のグラフの点$\mathrm{A}$から点$\mathrm{B}$までの部分で囲まれた図形の面積$S_1$を求めよ.ただし,$\mathrm{O}$は原点である.
(3)$S_1$と三角形$\mathrm{OBC}$の面積$S_2$の大小を比較せよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。