「不等号」について
タグ「不等号」の検索結果
(30ページ目:全4604問中291問~300問を表示) 国立 愛媛大学 2016年 第3問
$\displaystyle f(x)=\frac{x}{2}$,$g(x)=x$,$\displaystyle h(x)=\frac{x+1}{2}$とおく.$x_0=1$とし,$2$枚の硬貨を繰り返して投げ,$n$回目の事象により$x_n$を次のように定める.
\[ x_n=\left\{ \begin{array}{lll}
f(x_{n-1}) & & (2 \text{枚とも表のとき}) \\
g(x_{n-1}) & & (\text{$1$枚が表,$1$枚が裏のとき}) \phantom{\frac{[ ]}{[ ]}} \\
h(x_{n-1}) & & (\text{$2$枚とも裏のとき})
\end{array} \right. \]
また,$p_n,\ q_n,\ r_n$をそれぞれ$\displaystyle 0<x_n \leqq \frac{1}{3}$である確率,$\displaystyle \frac{1}{3}<x_n \leqq \frac{2}{3}$である確率,$\displaystyle \frac{2}{3}<x_n \leqq 1$である確率とする.
(1)すべての自然数$n$に対して$0<x_n \leqq 1$を示せ.
(2)$p_1,\ q_1,\ r_1$を求めよ.
(3)$p_n,\ q_n,\ r_n$を$p_{n-1},\ q_{n-1},\ r_{n-1}$を用いて表せ.
(4)$p_n-r_n$を求めよ.
(5)$p_n$を求めよ.
\[ x_n=\left\{ \begin{array}{lll}
f(x_{n-1}) & & (2 \text{枚とも表のとき}) \\
g(x_{n-1}) & & (\text{$1$枚が表,$1$枚が裏のとき}) \phantom{\frac{[ ]}{[ ]}} \\
h(x_{n-1}) & & (\text{$2$枚とも裏のとき})
\end{array} \right. \]
また,$p_n,\ q_n,\ r_n$をそれぞれ$\displaystyle 0<x_n \leqq \frac{1}{3}$である確率,$\displaystyle \frac{1}{3}<x_n \leqq \frac{2}{3}$である確率,$\displaystyle \frac{2}{3}<x_n \leqq 1$である確率とする.
(1)すべての自然数$n$に対して$0<x_n \leqq 1$を示せ.
(2)$p_1,\ q_1,\ r_1$を求めよ.
(3)$p_n,\ q_n,\ r_n$を$p_{n-1},\ q_{n-1},\ r_{n-1}$を用いて表せ.
(4)$p_n-r_n$を求めよ.
(5)$p_n$を求めよ.
国立 愛媛大学 2016年 第5問
$f(x)=xe^{-x}$とし,関数$y=f(x)$のグラフを$C_1$とする.また,$C_1$を$x$軸方向に$\log a$だけ平行移動したグラフを$C_2$とする.ただし,$a$は$a>1$を満たす実数である.
(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
(1)関数$y=f(x)$の増減,極値を調べ$C_1$の概形をかけ.なお,$\displaystyle \lim_{x \to \infty}xe^{-x}=0$であることを用いてよい.
(2)$C_1$と$C_2$の交点の$x$座標を求めよ.
(3)原点を$\mathrm{O}$とし,$C_2$と$x$軸の交点を$\mathrm{A}$とする.$C_1$,$C_2$および線分$\mathrm{OA}$で囲まれた部分の面積$S$を求めよ.
(4)$(3)$で求めた$S$に対して,$\displaystyle S<\frac{a-1}{a}$が成り立つことを示せ.
国立 浜松医科大学 2016年 第3問
以下の問いに答えよ.なお,必要があれば以下の極限値の公式を用いてもよい.
\[ \lim_{x \to \infty} \frac{x}{e^x}=0 \]
(1)方程式$2^x=x^2 (x>0)$の実数解の個数を求めよ.
(2)$a$を正の実数とし,$x$についての方程式$a^x=x^a (x>0)$を考える.
(i) 方程式$a^x=x^a (x>0)$の実数解の個数を求めよ.
(ii) 方程式$a^x=x^a (x>0)$で$a,\ x$がともに正の整数となる$a,\ x$の組$(a,\ x)$をすべて求めよ.ただし$a \neq x$とする.
\[ \lim_{x \to \infty} \frac{x}{e^x}=0 \]
(1)方程式$2^x=x^2 (x>0)$の実数解の個数を求めよ.
(2)$a$を正の実数とし,$x$についての方程式$a^x=x^a (x>0)$を考える.
(i) 方程式$a^x=x^a (x>0)$の実数解の個数を求めよ.
(ii) 方程式$a^x=x^a (x>0)$で$a,\ x$がともに正の整数となる$a,\ x$の組$(a,\ x)$をすべて求めよ.ただし$a \neq x$とする.
国立 豊橋技術科学大学 2016年 第3問
$xy$平面上において,媒介変数$\theta (0 \leqq \theta \leqq \pi)$によって$x=a(2 \cos \theta+\cos 2\theta+1)$,$y=a(2 \sin \theta+\sin 2\theta)$と表される下図の曲線について考える.ただし,$a$は正の定数とする.以下の問いに答えよ.
(1)$\displaystyle \frac{dx}{d\theta},\ \frac{dy}{d\theta}$を求めよ.
(2)$x$が最大となる点を点$\mathrm{A}$,$y$が最大となる点を点$\mathrm{B}$,$x$が最小となる点を点$\mathrm{C}$と定める.このとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標および各点での媒介変数$\theta$の値を求めよ.
(3)曲線と$x$軸で囲まれる図形の面積を求めよ.
(図は省略)
(1)$\displaystyle \frac{dx}{d\theta},\ \frac{dy}{d\theta}$を求めよ.
(2)$x$が最大となる点を点$\mathrm{A}$,$y$が最大となる点を点$\mathrm{B}$,$x$が最小となる点を点$\mathrm{C}$と定める.このとき,点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標および各点での媒介変数$\theta$の値を求めよ.
(3)曲線と$x$軸で囲まれる図形の面積を求めよ.
(図は省略)
国立 愛媛大学 2016年 第4問
$z_0$を虚数単位$i$と異なる複素数とする.複素数$z_n$を
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.
(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
\[ z_n=i+\frac{\sqrt{2}(z_{n-1}-i)(1+i)}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.
(1)すべての自然数$n$に対し$z_n \neq i$であることを示せ.
(2)$\displaystyle \frac{z_n-i}{z_{n-1}-i}$の絶対値$r$と偏角$\theta$を求めよ.ただし,$\theta$の範囲は$0 \leqq \theta<2\pi$とする.
(3)$z_m=z_0$となる最小の自然数$m$を求めよ.
(4)複素数平面上において$z_n$の表す点を$\mathrm{P}_n$とする.$(3)$で求めた$m$に対し$m$本の線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,$\mathrm{P}_{m-1} \mathrm{P}_m$で囲まれる図形の面積を$S$とする.$z_0=1-i$のとき$S$の値を求めよ.
国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)
(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
(図は省略)
(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
国立 茨城大学 2016年 第2問
$t$を$0 \leqq t \leqq 1$を満たす実数とし,関数$\displaystyle f(x)=|\cos x-t| \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$で表される曲線$y=f(x)$を$C$とする.曲線$C$と$x$軸との共有点の$x$座標を$\alpha$とする.また,$C$と$x$軸,$y$軸および直線$\displaystyle x=\frac{\pi}{2}$で囲まれた図形を$D$とし,$D$の面積を$S$とする.以下の各問に答えよ.
(1)$\displaystyle t=\frac{1}{2}$のとき,$D$を図示せよ.
(2)$S$を$\alpha$を用いて表せ.
(3)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$S$の最小値とそれを与える$t$の値を求めよ.
(4)$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$V$の最小値とそれを与える$t$の値を求めよ.
(1)$\displaystyle t=\frac{1}{2}$のとき,$D$を図示せよ.
(2)$S$を$\alpha$を用いて表せ.
(3)$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$S$の最小値とそれを与える$t$の値を求めよ.
(4)$D$を$x$軸のまわりに$1$回転してできる回転体の体積を$V$とする.$t$が$0 \leqq t \leqq 1$の範囲を動くとき,$V$の最小値とそれを与える$t$の値を求めよ.
国立 茨城大学 2016年 第3問
複素数平面上で,複素数$z$に対応する点$\mathrm{P}$を$\mathrm{P}(z)$と表す.$3$点$\mathrm{O}(0)$,$\mathrm{A}(1)$,$\mathrm{B}(\beta)$を頂点とする三角形$\mathrm{OAB}$がある.ただし,複素数$\beta$の偏角$\theta$は,$0<\theta<\pi$を満たすとする.また,$s$と$t$は$4s-t^2>0$を満たす実数とする.等式
\[ \beta^2-t \beta+s=0 \]
が成り立つとき,以下の各問に答えよ.
(1)複素数$\beta$の実部と虚部をそれぞれ$s$と$t$を用いて表せ.
(2)複素数$\beta$の絶対値と,偏角$\theta$に対する$\sin \theta$を,それぞれ$s$と$t$を用いて表せ.
(3)三角形$\mathrm{OAB}$が二等辺三角形になるために$s$と$t$が満たすべき条件を求めよ.
(4)三角形$\mathrm{OAB}$が$\mathrm{OA}=\mathrm{AB}$である二等辺三角形とする.このとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{1}{4}$となる$s$と$t$の値の組をすべて求めよ.
\[ \beta^2-t \beta+s=0 \]
が成り立つとき,以下の各問に答えよ.
(1)複素数$\beta$の実部と虚部をそれぞれ$s$と$t$を用いて表せ.
(2)複素数$\beta$の絶対値と,偏角$\theta$に対する$\sin \theta$を,それぞれ$s$と$t$を用いて表せ.
(3)三角形$\mathrm{OAB}$が二等辺三角形になるために$s$と$t$が満たすべき条件を求めよ.
(4)三角形$\mathrm{OAB}$が$\mathrm{OA}=\mathrm{AB}$である二等辺三角形とする.このとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{1}{4}$となる$s$と$t$の値の組をすべて求めよ.
国立 茨城大学 2016年 第1問
以下の各問に答えよ.ただし,対数は自然対数であり,$e$は自然対数の底である.
(1)曲線$\displaystyle C:y=\frac{e^x+e^{-x}}{2}$について,傾きが$1$である接線を$\ell$とする.$C$と$\ell$との接点の座標を求めよ.
(2)実数$\alpha,\ \beta$が$0<\alpha<\beta<1$を満たすとき,$2$つの実数$\displaystyle \frac{e^\alpha-\alpha}{\alpha}$と$\displaystyle \frac{e^\beta-\beta}{\beta}$の大小関係を不等号を用いて表せ.
(3)定積分$\displaystyle \int_0^{e-1} x \log (x+1) \, dx$を求めよ.
(1)曲線$\displaystyle C:y=\frac{e^x+e^{-x}}{2}$について,傾きが$1$である接線を$\ell$とする.$C$と$\ell$との接点の座標を求めよ.
(2)実数$\alpha,\ \beta$が$0<\alpha<\beta<1$を満たすとき,$2$つの実数$\displaystyle \frac{e^\alpha-\alpha}{\alpha}$と$\displaystyle \frac{e^\beta-\beta}{\beta}$の大小関係を不等号を用いて表せ.
(3)定積分$\displaystyle \int_0^{e-1} x \log (x+1) \, dx$を求めよ.
国立 茨城大学 2016年 第2問
以下の各問に答えよ.
(1)不等式$\log_x y>0$の表す領域を座標平面上に図示せよ.
(2)不等式$\log_y x<\log_x y$の表す領域を座標平面上に図示せよ.
(1)不等式$\log_x y>0$の表す領域を座標平面上に図示せよ.
(2)不等式$\log_y x<\log_x y$の表す領域を座標平面上に図示せよ.