タグ「不等号」の検索結果

12ページ目:全4604問中111問~120問を表示)
信州大学 国立 信州大学 2016年 第2問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
信州大学 国立 信州大学 2016年 第2問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
埼玉大学 国立 埼玉大学 2016年 第2問
$a,\ b,\ c$および$d$は実数で,$a>0$,$b<0$,$d \neq 0$とする.また
\[ f(x)=ax+b,\quad g(x)=x^2+cx+d \]
とおく.$xyz$空間内に$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$があり,点$\mathrm{O}$は原点を表す.点$\mathrm{P}_0(-4,\ 0,\ 4 \sqrt{3})$は定点で,$\mathrm{P}_1$と$\mathrm{P}_2$はそれぞれ実数$t$の値に応じて定まる点$\mathrm{P}_1(-t,\ f(t),\ 2 \sqrt{3})$,$\mathrm{P}_2(t,\ g(t),\ 0)$である.この$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$が次の$3$条件をみたしているとき,定数$a,\ b,\ c,\ d$の値をすべて求めなさい.


(i) $t=0$のとき,ベクトル$\overrightarrow{\mathrm{OP}}_1$と$\overrightarrow{\mathrm{OP}}_2$のなす角は$\displaystyle \frac{\pi}{3}$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}_1$の長さの最小値は$\sqrt{14}$である.
(iii) 点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$は,$t=1$および$t=-3$のとき,それぞれ同一平面上にある.
信州大学 国立 信州大学 2016年 第2問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
信州大学 国立 信州大学 2016年 第5問
$\mathrm{P}_0$,$\mathrm{Q}_0$を複素数平面上の異なる点とする.自然数$k$に対して,平面上の点$\mathrm{P}_k$,$\mathrm{Q}_k$を以下の条件$(ⅰ)$,$(ⅱ)$を満たすものとして定める.

(i) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k-1}$を$\mathrm{P}_{k-1}$を中心として角$\theta$だけ回転させた線分が$\mathrm{P}_{k-1} \mathrm{Q}_{k}$となる.
(ii) 線分$\mathrm{P}_{k-1} \mathrm{Q}_{k}$を$\mathrm{Q}_{k}$を中心として角$\theta^\prime$だけ回転させた線分が$\mathrm{Q}_{k} \mathrm{P}_{k}$となる.

以下の問いに答えよ.

(1)$\mathrm{Q}_{k+2}=\mathrm{Q}_k$となるための,$\theta$と$\theta^\prime$に関する条件を求めよ.
(2)$0 \leqq \theta<2\pi$,$\theta=-\theta^\prime$,$|\mathrm{Q|_0 \mathrm{P}_0}=1$とする.$\mathrm{Q}_0$を中心とし,半径が$r$の円を$C$とする.$\mathrm{P}_{n-1}$は$C$の内部,$\mathrm{Q}_n$は$C$の外部にあるという.このとき,$r^2$が取り得る値の範囲を$n$と$\theta$を用いて表せ.
岩手大学 国立 岩手大学 2016年 第4問
曲線$y=-x^3+3x^2+x-3$を$C$とし,曲線$C$上の点$(3,\ 0)$における接線を$\ell$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$p$を実数とし,点$(p,\ q_1)$は接線$\ell$上にあり,点$(p,\ q_2)$は曲線$C$上にあるとする.$p<3$の範囲を$p$が動くとき,$q_1-q_2$の最大値を求めよ.
(3)接線$\ell$と曲線$C$で囲まれた図形は,$y$軸によって$2$つの部分に分けられるが,それらの面積のうち小さい方を$S$,大きい方を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
岩手大学 国立 岩手大学 2016年 第2問
平行四辺形$\mathrm{ABCD}$において,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AD}}=\overrightarrow{b}$とおき,
\[ |\overrightarrow{a|}=4,\quad |\overrightarrow{b|}=5,\quad |\overrightarrow{\mathrm{AC|}}=6 \]
であるとする.また,辺$\mathrm{BC}$を$1:4$に内分する点を$\mathrm{E}$,辺$\mathrm{AB}$を$s:(1-s)$に内分する点を$\mathrm{F}$とし(ただし,$0<s<1$),線分$\mathrm{AE}$と線分$\mathrm{DF}$の交点を$\mathrm{P}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{a}$と$\overrightarrow{b}$の内積$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{a},\ \overrightarrow{b}$および$s$で表せ.
(3)平行四辺形$\mathrm{ABCD}$の$2$本の対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{Q}$とする.$\overrightarrow{\mathrm{PQ}}$が$\overrightarrow{b}$と平行であるとき,$s$の値および$|\overrightarrow{\mathrm{AP|}}$の値を求めよ.
東京農工大学 国立 東京農工大学 2016年 第2問
$n$を自然数とし,$a,\ b,\ r$は実数で$b>0$,$r>0$とする.複素数$w=a+bi$は$w^2=-2 \overline{w}$を満たすとする.$\alpha_n=r^{n+1} w^{2-3n} (n=1,\ 2,\ 3,\ \cdots)$とする.ただし,$i$は虚数単位とし,複素数$z$に共役な複素数を$\overline{z}$で表す.次の問いに答えよ.

(1)$a$と$b$の値を求めよ.
(2)複素数平面上の$3$点$\mathrm{O}(0)$,$\mathrm{A}(\alpha_1)$,$\mathrm{B}(\overline{\alpha_1})$について,$\angle \mathrm{AOB}$の大きさを$\theta$とする.ただし,$0 \leqq \theta \leqq \pi$とする.$\theta$の値を求めよ.
(3)$\alpha_n$の実部を$c_n (n=1,\ 2,\ 3,\ \cdots)$とする.$c_n$を$n$と$r$を用いて表せ.
(4)$(3)$で求めた$c_n$を第$n$項とする数列$\{c_n\}$について,無限級数$\displaystyle \sum_{n=1}^\infty c_n$が収束し,その和が$\displaystyle \frac{8}{3}$となるような$r$の値を求めよ.
福島大学 国立 福島大学 2016年 第2問
次の問いに答えなさい.

(1)連立不等式$\left\{ \begin{array}{l}
y \leqq -x^2+4 \\
y \geqq -\displaystyle\frac{1}{2}x+1
\end{array} \right.$の表す領域を図示しなさい.

(2)点$(x,\ y)$が$(1)$の領域を動くとき,$x+y$のとりうる値の最大値と最小値を求めなさい.
福島大学 国立 福島大学 2016年 第3問
$t$を$\displaystyle t+\frac{1}{t}=\sqrt{2}$を満たす数とし,$\displaystyle A_n=t^n+\frac{1}{t^n}$($n$は自然数)とするとき,次の問いに答えなさい.

(1)$A_2,\ A_3,\ A_4$の値を求めなさい.
(2)$n \geqq 2$のとき,$A_{n+1}$を$A_n,\ A_{n-1}$を用いて表しなさい.
(3)$n \geqq 3$のとき,$A_{n+2}$を$A_{n-2}$を用いて表しなさい.
(4)$A_n$のとりうる値をすべて求めなさい.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。