タグ「不等号」の検索結果

11ページ目:全4604問中101問~110問を表示)
群馬大学 国立 群馬大学 2016年 第3問
定数$a$は$0<a<1$とし,また$n$は正の整数とする.ただし,$n=1$のときは$(a-x)^{n-1}=1$とする.
\[ R_n=n \int_0^a \frac{(a-x)^{n-1}}{(1-x)^{n+1}} \, dx \]
とするとき,次の問いに答えよ.

(1)$R_1$と$R_2$を求めよ.
(2)$R_n$を求めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty R_n$の和を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第3問
$2$つの数列$\{\theta_n\},\ \{a_n\}$を漸化式

$\displaystyle \theta_1=\frac{\pi}{4},\quad \theta_{n+1}=\frac{\pi-\theta_n}{2} \quad (n=1,\ 2,\ 3,\ \cdots),$

$\displaystyle a_1=\sqrt{2},\quad a_{n+1}=\sqrt{|2-a_n|} \quad (n=1,\ 2,\ 3,\ \cdots)$

によって定義するとき,次の問いに答えよ.

(1)数列$\{\theta_n\}$の一般項を求めよ.また$\displaystyle 0<\theta_n<\frac{\pi}{2} (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(2)$\displaystyle \cos \theta_{n+1}=\sqrt{\frac{1-\cos \theta_n}{2}} (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(3)$2 \cos \theta_n=a_n (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを示せ.
(4)$\displaystyle \lim_{n \to \infty}a_n$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第4問
実数$a$は$\displaystyle 0<a<\frac{1}{2}$であるとする.関数$f(x)=\sqrt{x}-a \log x$について次の問いに答えよ.

(1)関数$y=f(x)$の増減,極値,グラフの凹凸および変曲点を調べて,そのグラフの概形をかけ.ただし$\displaystyle \lim_{x \to \infty} \frac{\log x}{\sqrt{x}}=0$となることを用いてよい.
(2)曲線$y=f(x)$上の点$(1,\ 1)$における接線を$\ell$とする.曲線$y=f(x)$は$\ell$と垂直な接線をもつことを示せ.
宮城教育大学 国立 宮城教育大学 2016年 第5問
点$\mathrm{P}$は$x$座標が正または$0$の範囲で放物線$\displaystyle y=1-\frac{x^2}{2}$上を動くとする.点$\mathrm{P}$における放物線$\displaystyle y=1-\frac{x^2}{2}$の法線を$m$として,法線$m$と$x$軸とのなす角を$\displaystyle \theta \left( 0<\theta \leqq \frac{\pi}{2} \right)$とする.法線$m$上の点$\mathrm{Q}$は$\mathrm{PQ}=1$を満たし,不等式$\displaystyle y>1-\frac{x^2}{2}$の表す領域にあるとする.点$\mathrm{Q}$の軌跡を$C$とし,次の問いに答えよ.

(1)点$\mathrm{P},\ \mathrm{Q}$の座標を$\theta$を用いて表せ.
(2)曲線$C$と$x$軸との交点の座標を求めよ.

(3)不定積分$\displaystyle \int \frac{1}{\sin \theta} \, d\theta$を$t=\cos \theta$と置換することにより求めよ.

(4)不定積分$\displaystyle \int \frac{1}{\sin^2 \theta} \, d\theta$,$\displaystyle \int \frac{1}{\sin^4 \theta} \, d\theta$を$\displaystyle t=\frac{\cos \theta}{\sin \theta}$と置換することにより求めよ.

(5)曲線$C$と$x$軸および$y$軸により囲まれた図形の面積を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第3問
$k$を実数として$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-x^2+4x+k \]
を考える.点$\mathrm{P}(a,\ a^2)$における$C_1$の接線を$\ell$とする.$C_2$は$\ell$に点$\mathrm{Q}$で接するとして,点$\mathrm{Q}$の$x$座標を$b$とする.不等式$a>b>0$が成り立つとする.$C_1$と$\ell$および$x$軸で囲まれた図形の面積を$S(a)$とし,$C_2$と$\ell$および$y$軸で囲まれた図形の面積を$T(a)$とする.次の問いに答えよ.

(1)$\ell$の方程式を$a$を用いて表せ.
(2)$k,\ b$をそれぞれ$a$を用いて表せ.
(3)$S(a),\ T(a)$をそれぞれ$a$を用いて表せ.
(4)$a$が条件$a>b>0$を満たすように動くとき,$S(a)+T(a)$の最小値とそのときの$a$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第1問
次の問いに答えよ.

(1)整数$x,\ y$に対して$11x+7y$が$77$の倍数ならば,$x$は$7$の倍数であり$y$は$11$の倍数であることを示せ.
(2)整数$x,\ y$が次の$3$つの条件
\[ \sin \left( \frac{\pi}{7}x+\frac{\pi}{11}y \right)=0,\quad 10<x<34,\quad 10<y<30 \]
を満たすとき,$|x-y|$の最小値とそのときの$x,\ y$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第3問
$k$を実数として$2$つの放物線
\[ C_1:y=x^2,\quad C_2:y=-x^2+4x+k \]
を考える.点$\mathrm{P}(a,\ a^2)$における$C_1$の接線を$\ell$とする.$C_2$は$\ell$に点$\mathrm{Q}$で接するとして,点$\mathrm{Q}$の$x$座標を$b$とする.不等式$a>b>0$が成り立つとする.$C_1$と$\ell$および$x$軸で囲まれた図形の面積を$S(a)$とし,$C_2$と$\ell$および$y$軸で囲まれた図形の面積を$T(a)$とする.次の問いに答えよ.

(1)$\ell$の方程式を$a$を用いて表せ.
(2)$k,\ b$をそれぞれ$a$を用いて表せ.
(3)$S(a),\ T(a)$をそれぞれ$a$を用いて表せ.
(4)$a$が条件$a>b>0$を満たすように動くとき,$S(a)+T(a)$の最小値とそのときの$a$の値を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
信州大学 国立 信州大学 2016年 第4問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
信州大学 国立 信州大学 2016年 第3問
平面上の点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$に対して,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を$\displaystyle \alpha \left( 0<\alpha<\frac{\pi}{2} \right)$とし,$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OC}}$のなす角を$\displaystyle \beta \left( 0<\beta<\frac{\pi}{2} \right)$とする.さらに,
\[ \angle \mathrm{BOC}=\alpha+\beta,\quad |\overrightarrow{\mathrm{OB|}}=2 |\overrightarrow{\mathrm{OA|}}=4 \overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1 \]
であるとする.$\triangle \mathrm{OAB}$,$\triangle \mathrm{OAC}$,$\triangle \mathrm{OBC}$の面積をそれぞれ$s,\ t,\ u$とする.このとき,以下の問いに答えよ.

(1)$s,\ t,\ u$を,それぞれ$\alpha,\ \beta$を用いて表せ.
(2)$2s=2t=u$であるとき,$\alpha$と$\beta$を求めよ.
スポンサーリンク

「不等号」とは・・・

 まだこのタグの説明は執筆されていません。