タグ「三角比」の検索結果

192ページ目:全1924問中1911問~1920問を表示)
京都府立大学 公立 京都府立大学 2010年 第3問
関数$\displaystyle f(x)=\int_0^\pi |t^2-x^2| \sin t \, dt$について,以下の問いに答えよ.

(1)$f(0)$を求めよ.
(2)定数$a$を実数とする.$f(a)$を求めよ.
(3)$f(x)$は$x=\pi$で微分可能であることを示せ.
(4)点$(\pi,\ f(\pi))$における曲線$C:y=f(x)$の接線を$\ell$とする.$C$,$\ell$,および$y$軸で囲まれた部分の面積を求めよ.
高知工科大学 公立 高知工科大学 2010年 第4問
$r$と$\theta$を$-1<r<1,\ 0 \leqq \theta < 2\pi$を満たす定数とする.行列$A=r \left( \begin{array}{rr}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$に対して,次の各問に答えよ.

(1)行列$E-A$は逆行列を持つことを証明し,$(E-A)^{-1}$を求めよ.
(2)全ての自然数$n$について
\[ A^n=r^n \left( \begin{array}{rr}
\cos n \theta & -\sin n \theta \\
\sin n \theta & \cos n \theta
\end{array} \right) \]
が成立することを数学的帰納法を用いて証明せよ.
(3)$n$を2以上の自然数とする.$(E+A+\cdots +A^{n-1})(E-A)$を簡単な式にせよ.
(4)次の極限値を求めよ.
\[ ① \quad \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \cos k\theta ② \lim_{n \to \infty}\sum_{k=0}^{n-1}r^k \sin k\theta \]
大阪府立大学 公立 大阪府立大学 2010年 第4問
次の問いに答えよ.

(1)$a$を正の定数とするとき,関数
\[ f(x)=\log (x+\sqrt{a+x^2}) \]
の導関数$f^\prime(x)$を求めよ.
(2)$t=\sqrt{3}\tan \theta$とおくことにより,定積分
\[ I=\int_0^1 \frac{dt}{\sqrt{(3+t^2)^3}} \]
を求めよ.
(3)$0 \leqq x \leqq 1$であるすべての$x$に対して,不等式
\[ \int_0^x \frac{dt}{\sqrt{(3+t^2)^3}} \geqq k \int_0^x \frac{dt}{\sqrt{3+t^2}} \]
が成り立つための実数$k$の範囲を求めよ.ただし,$\log 3=1.10$とする.
兵庫県立大学 公立 兵庫県立大学 2010年 第5問
自然数$n$に対して,関数$f_n(x)$を次のように定義する.
\[ f_n(x)=(\sin x+\sin 2x+\cdots +\sin nx)\sin \frac{x}{2} \]
次の問いに答えよ.

(1)方程式$f_2(x)=0$の実数解$x$で,$0<x<\pi$を満たすものを求めよ.
(2)定積分$\displaystyle \int_0^\pi f_{50}(x) \, dx$を求めよ.
会津大学 公立 会津大学 2010年 第1問
$(1)$の問いに答えよ.また,$(2)$から$(6)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int_1^e x \log x \, dx=[ ]$
(ii) $\displaystyle \int \sin^3 x \cos x \, dx=[ ]$

(2)$y=\sqrt[5]{2x-1}$のとき,$\displaystyle \frac{dy}{dx}=[ ]$である.
(3)方程式$2^{x^2-1}4^{x+2}=8^{x+3}$の解は$x=[ ]$である.
(4)方程式$\log_3(x-5)=2-\log_3(x+3)$の解は$x=[ ]$である.
(5)2直線$y=3x$と$\displaystyle y=\frac{x}{3}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(6)座標平面上で次の連立不等式
\[ \left\{
\begin{array}{l}
|x|+|y| \leqq 2 \\
x^2+y^2 \geqq 2
\end{array}
\right. \]
の表す領域の面積は[ ]である.
公立はこだて未来大学 公立 公立はこだて未来大学 2010年 第4問
以下の問いに答えよ.

(1)三角関数の加法定理を用いて,次の等式を証明せよ.
\[ \sin \alpha-\sin \beta=2 \cos \frac{\alpha+\beta}{2}\sin \frac{\alpha-\beta}{2} \]
(2)次の不等式を証明せよ.$|\sin \alpha-\sin \beta| \leqq |\alpha-\beta|$ \\
必要ならば,実数$\theta$に対して成り立つ不等式$|\sin \theta| \leqq |\theta|$を用いてよい.
(3)数列$\{a_n\}$を,次の条件によって定める.
\[ a_1=\frac{\pi}{2},\quad a_{n+1}=\frac{1}{2}\sin a_n+\frac{\pi}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,次の不等式を証明せよ.$\displaystyle |a_{n+2|-a_{n+1}} \leqq \frac{1}{2} |a_{n+1|-a_n} \ (n=1,\ 2,\ 3,\ \cdots)$
(4)(3)の数列$\{a_n\}$に対して,次の不等式を証明せよ.$\displaystyle |a_{n+1|-a_n} \leqq \left( \frac{1}{2} \right)^n$ \ $(n=1,\ 2,\ 3,\ \cdots)$
九州歯科大学 公立 九州歯科大学 2010年 第3問
$\displaystyle I_n=\int_0^c \sin^n x \cos^5 x \, dx$,$\displaystyle J_n=\int_0^c \sin^n x \cos x \, dx$,$K_n=J_n-J_{n+2}$とおくとき,次の問いに答えよ.ただし,$n$は自然数であり,$c$は正の定数である.

(1)$I_n$を$K_n$と$K_{n+2}$を用いて表せ.
(2)$\displaystyle A_n=\sum_{m=1}^n I_m$を$K_1,\ K_2,\ K_{n+1},\ K_{n+2}$を用いて表せ.
(3)$\displaystyle c=\frac{\pi}{2}$のとき,$\displaystyle K_n=\frac{2}{(n+a_1)(n+a_2)}$となる定数$a_1$と$a_2$を求めよ.ただし,$a_1<a_2$とする.
(4)$\displaystyle c=\frac{\pi}{2}$のとき,$\displaystyle \lim_{n \to \infty} \alpha(A_n+\beta)n^2=1$となる定数$\alpha$と$\beta$を求めよ.
九州歯科大学 公立 九州歯科大学 2010年 第2問
辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを,それぞれ,$4,\ 2,\ b$とする$\triangle \mathrm{ABC}$の辺$\mathrm{AC}$と$\angle \mathrm{ABC}$の$2$等分線の交点を$\mathrm{D}$とする.$\alpha=\angle \mathrm{BAC}$,$\beta=\angle \mathrm{ABC}$,$\gamma=\angle \mathrm{ACB}$,$\displaystyle \overrightarrow{u}=t \overrightarrow{\mathrm{AB}}+(1-t) \overrightarrow{\mathrm{BC}}+\frac{3}{2} \overrightarrow{\mathrm{CD}}$とおくとき,次の問いに答えよ.ただし,$t$は定数である.

(1)$\triangle \mathrm{BCD}$の面積$S_1$と$\triangle \mathrm{ABD}$の面積$S_2$の比$\displaystyle p=\frac{S_1}{S_2}$の値を求めよ.
(2)$|\overrightarrow{\mathrm{CD}}|$と$|\overrightarrow{\mathrm{CA}}|$の比$\displaystyle r=\frac{|\overrightarrow{\mathrm{CD}}|}{|\overrightarrow{\mathrm{CA}}|}$の値を求めよ.
(3)$w=|\overrightarrow{u}|^2+4bt \cos \alpha+16t(1-t) \cos \beta+2b(1-t) \cos \gamma$を$b$と$t$を用いて表せ.
(4)$t=p$のとき,$z=3|\overrightarrow{u}|+4w-b^2$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2010年 第3問
$xy$平面において,原点$\mathrm{O}$を中心とする単位円とその \\
単位円周上の点$\mathrm{A}(-1,\ 0)$を考える.$y$軸上の点 \\
$\mathrm{P}(0,\ t)$に対して$\mathrm{A}$と$\mathrm{P}$を結ぶ直線がこの単位円と \\
$\mathrm{A}$以外で交わる点を$\mathrm{Q}$とし,$\mathrm{OQ}$が$x$軸の正の方向 \\
となす角を$\theta$とする.以下の問に答えなさい. \\
ただし,$-\pi<\theta<\pi$とする.
\img{562_2720_2010_2}{42}


(1)$t$を$\theta$で表しなさい.
(2)$\cos \theta$と$\sin \theta$をそれぞれ$t$で表しなさい.
(3)$\cos \theta$と$\sin \theta$の少なくとも一方が無理数であれば,$t$も無理数であることを示しなさい.
和歌山県立医科大学 公立 和歌山県立医科大学 2010年 第1問
$\displaystyle \frac{\pi}{12} \leqq \theta \leqq \frac{\pi}{3}$とする.次の問いに答えよ.

(1)$\displaystyle t=\tan \theta+\frac{1}{\tan \theta}$とおく.$t$のとり得る値の範囲を求めよ.
(2)$a$を正の定数とする.$\displaystyle y=\tan^2 \theta+\frac{1}{\tan^2 \theta}-a \left( \tan \theta+\frac{1}{\tan \theta} \right)$のとり得る値の範囲を求めよ.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。