タグ「三角比」の検索結果

130ページ目:全1924問中1291問~1300問を表示)
青森中央学院大学 私立 青森中央学院大学 2012年 第8問
$\displaystyle \sin \theta + \cos \theta = \frac{1}{\sqrt{5}}$のとき,$-\displaystyle \frac{8}{13} \left(\tan^3 \theta + \frac{1}{\tan^3 \theta} \right)$の値を求めよ.
青森中央学院大学 私立 青森中央学院大学 2012年 第9問
関数$y=2\cos \theta - \sin^2 \theta (0 \leqq \theta \leqq 2\pi)$の最大値を$M$,最小値を$m$とする.$M+m$の値を求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第6問
$\triangle \mathrm{ABC}$の$3$辺の長さが$\mathrm{BC}=15,\ \mathrm{CA} = 4,\ \mathrm{AB} = 13$のとき,次の値を求めよ.

(1)$\cos A$および$\sin A$
(2)外接円の半径
(3)$\triangle \mathrm{ABC}$の面積および内接円の半径
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~シに当てはまる数または式を記入せよ.

(1)方程式$x^3-4x^2+ax+b=0$の$1$つの解が$1-2i$であるとき,実数解は$[ア]$であり,$a=[イ]$,$b=[ウ]$である.ただし,定数$a,\ b$は実数とし,$i$は虚数単位とする.
(2)サイコロを続けて$2$回振り,最初に出た目が$a$,次に出た目が$b$ならば座標平面上に直線$\ell:y=ax-b$を描く.この試行において,直線$\ell$が放物線$y=x^2$と相異なる$2$点で交わる確率は$[エ]$である.
(3)不等式$x^2+y^2+6x+4y-12 \leqq 0$の表す領域の面積は$[オ]$である.
(4)$\displaystyle x=\frac{1}{\sqrt{2}-1},\ y=\frac{1}{\sqrt{2}+1}$であるとき,$x^3+y^3-2xy^2=[カ]$である.
(5)$0 \leqq \theta < 2\pi$のとき,$\sqrt{3}\cos \theta-\sin \theta=r \sin (\theta +\alpha)$の形に変形すると,$r=[キ]$,$\alpha=[ク]$である.ただし,$0 \leqq \alpha < 2\pi$とする.
(6)実数からなる数列$\{a_n\}$が$a_{n+1}^3=2a_n^2,\ a_1=4$を満たすとき,$\log_2a_n=[ケ]$である.
(7)図のように東西$6$本,南北$6$本の道路で区画された場所がある.南西の端の地点$\mathrm{A}$から北東の端の地点$\mathrm{B}$へ行く最短ルートは$[コ]$通りある.
(図は省略)
(8)$3$次関数$f(x)=x^3-3a^2x+b (a>0)$が極大値$13$と極小値$-19$を持つならば$a=[サ]$,$b=[シ]$である.
立教大学 私立 立教大学 2012年 第3問
座標平面上に2点A$(-1,\ 3)$,B$(5,\ 15)$と直線$\ell$が与えられており,2点A,Bは直線$\ell$に関して対称な位置にある.直線$\ell$が$y$軸と交わる点をCとし,線分ABの中点をMとする.線分MA上に,点Mと異なる点Pをとる.このとき次の問(1)~(4)に答えよ.

(1)点Mの座標と直線ABの方程式を求めよ.
(2)直線$\ell$の方程式を求めよ.
(3)点Pの$x$座標を$t$とする.$\angle \text{PCM}=\theta$とおくとき,$\cos \theta$を$t$を用いて表せ.
(4)直線$\ell$に関して,点Pと対称な点をQとする.三角形PCQが正三角形となるとき,$t$の値を求めよ.
立教大学 私立 立教大学 2012年 第3問
座標平面上に円$x^2+y^2=4$と円上の点$\mathrm{P}(1,\ -\sqrt{3})$,$\mathrm{Q}(-1,\ -\sqrt{3})$が与えられている.$0<\theta<\pi$のとき,円上の点を$\mathrm{R}(2\cos \theta,\ 2\sin \theta)$とし,$\angle \mathrm{QPR}=\alpha,\ \angle \mathrm{PQR}=\beta$とする.このとき,次の問(1)~(3)に答えよ.

(1)点$(2,\ 0)$を$\mathrm{A}$,点$(-2,\ 0)$を$\mathrm{B}$とするとき,弧$\mathrm{PAR}$に対する中心角と弧$\mathrm{QBR}$に対する中心角を$\theta$を用いて表せ.
(2)$\alpha,\ \beta$を$\theta$を用いて表せ.
(3)$2 \sin \alpha=\sqrt{3} \sin \beta$となるときの点$\mathrm{R}$の座標を求めよ.
立教大学 私立 立教大学 2012年 第2問
正の数$a$に対して,空間内の$3$点$\displaystyle \mathrm{A} \left( \frac{1}{\sqrt{a}},\ 0,\ 0 \right)$,$\mathrm{B} (0,\ \sqrt{a},\ 0)$,$\mathrm{C} (0,\ 0,\ \sqrt{a})$を頂点とする三角形$\mathrm{ABC}$が与えられている.このとき,次の問いに答えよ.

(1)三角形$\mathrm{ABC}$の$3$辺の長さ$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$を$a$で表せ.
(2)$\angle \mathrm{BAC}$を$\theta$とおく.$\cos \theta$を$a$で表せ.
(3)三角形$\mathrm{ABC}$の面積$S$を$a$で表せ.
(4)$\displaystyle \frac{S}{\mathrm{BC}}$が最小値をとるときの$a$の値とその最小値を求めよ.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~キに当てはまる数または式を記入せよ.

(1)$0 \leqq \theta < \pi$の範囲で,$\cos^2 \theta+2\sqrt{3}\sin \theta \cos \theta-\sin^2 \theta$の最小値は[ア]であり,そのときの$\theta$の値は[イ]である.
(2)$\displaystyle \frac{a^x-a^{-x}}{2}=1$のとき,$x=\log_a y$と表せば,$y=[ウ]$である.ただし,$a>0$,$a \neq 1$とする.
(3)さいころを$3$回投げ,出た目を順に,百の位,十の位,一の位にして$3$桁の自然数をつくる.このとき,この自然数が$6$で割り切れ,さらに桁の並びを逆にしても$6$で割り切れる確率は[エ]である.
(4)最高次の係数が$1$の整式$P(x)$で,条件$P(2)=0,\ P(0)=1,\ P(1)=2$をみたすもののうち,最も次数の低いものは$P(x)=[オ]$である.
(5)座標平面上の$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(4,\ 0)$,$\mathrm{B}(6,\ 2)$を頂点とする三角形$\mathrm{OAB}$の外心の座標は$([カ],\ [キ])$である.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~ケに当てはまる数または式を記入せよ.

(1)$\sqrt{2} \div \sqrt[4]{4} \times \sqrt[12]{32} \div \sqrt[6]{2}=2^a$とすると$a=[ア]$である.
(2)座標空間に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 2,\ 1)$,$\mathrm{B}(1,\ 3,\ 5)$,$\mathrm{C}(x,\ y,\ z)$がある.ベクトル$\overrightarrow{\mathrm{OC}}$は,ベクトル$\overrightarrow{\mathrm{OA}}$およびベクトル$\overrightarrow{\mathrm{OB}}$と垂直である.このとき,$(x,\ y,\ z)=[イ]$である.ただし,$x>0$,$|\overrightarrow{\mathrm{OC}}|=1$とする.
(3)$i$を虚数単位として,複素数$x=\sqrt{3}+\sqrt{7}i$を考える.$x$と共役な複素数を$\overline{x}$とするとき,$x^3+\overline{x}^3$の値は$[ウ]$である.
(4)$\log_2x+\log_4y=1$のとき,$x^2+y$の最小値は$[エ]$である.
(5)$4$つの数字$0,\ 1,\ 2,\ 6$から,$18$で割り切れる$4$桁の数を作るとすると$[オ]$通りできる.ただし,同じ数字は$2$度以上使わないものとする.
(6)$\cos 75^\circ$の値は$[カ]$である.
(7)$\displaystyle \left( x^3-\frac{1}{2} \right)^{10}$の展開式における$x^{15}$の係数は$[キ]$である.
(8)三角形$\mathrm{ABC}$の外心を$\mathrm{O}$とする.$\angle \mathrm{OAC}=40^\circ$,$\angle \mathrm{OCB}=25^\circ$のとき,$\angle \mathrm{AOC}=[ク]$であり,$\angle \mathrm{ABO}=[ケ]$である.
東京理科大学 私立 東京理科大学 2012年 第2問
$\theta$を$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を満たす実数とする.$xy$平面上に$2$点$\mathrm{P}(\cos \theta,\ \sin \theta)$と$\displaystyle \mathrm{Q}(\frac{3}{2}\cos \theta,\ \frac{3}{2}\sin \theta)$がある.点$\mathrm{R}$を$\mathrm{PR}:\mathrm{QR}=1:2$を満たす点とする.

(1)点$\mathrm{R}$が直線$y \cos \theta-x \sin \theta=0$上にあるとき,それらの点の座標は
\[ \left( \frac{[ク]}{[ケ]} \cos \theta,\ \frac{[コ]}{[サ]} \sin \theta \right),\quad \left( \frac{[シ]}{[ス]} \cos \theta,\ \frac{[セ]}{[ソ]} \sin \theta \right) \]
である.ただし,$\displaystyle \frac{[ク]}{[ケ]}>\frac{[シ]}{[ス]}$とする.
(2)$\mathrm{R}$の軌跡は方程式
\[ \left( x-\frac{[タ]}{[チ]} \cos \theta \right)^2+\left( y-\frac{[ツ]}{[テ]} \sin \theta \right)^2=\frac{[ト]}{[ナ]} \]
が表す円$D(\theta)$である.
(3)$\theta$が$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$を動くとき,(2)で求めた$D(\theta)$が通過する部分の面積は$\displaystyle \frac{[ニ]}{[ヌネ]} \pi$である.
スポンサーリンク

「三角比」とは・・・

 まだこのタグの説明は執筆されていません。