タグ「トナ」の検索結果

1ページ目:全17問中1問~10問を表示)
金沢工業大学 私立 金沢工業大学 2016年 第1問
次の問いに答えよ.

(1)$2$次方程式$x^2+3x+1=0$の$1$つの解$x$について,
\[ x+\frac{1}{x}=[アイ],\quad x^2+\frac{1}{x^2}=[ウ],\quad x^4+\frac{1}{x^4}=[エオ] \]
である.
(2)不等式$|x-3|<a$を満たす整数$x$がちょうど$5$個であるような定数$a$の範囲は$[カ]<a \leqq [キ]$である.
(3)$a,\ b$を整数とする.$a$を$13$で割ると$10$余り,$b$を$13$で割ると$7$余るとき,$a+b$,$ab$を$13$で割ると余りはそれぞれ$[ク]$,$[ケ]$である.また,$a^2b+ab^2-a-b$を$13$で割ると余りは$[コ]$である.
(4)男性$3$人と女性$3$人の$6$人を$2$人ずつ$3$組に分ける方法は$[サシ]$通りあり,そのうち各組が男女のペアになる分け方は$[ス]$通りある.
(5)$\displaystyle \tan \theta=\frac{2}{\sqrt{5}} \left( \pi<\theta <\frac{3}{2} \pi \right)$のとき,
\[ \frac{\cos \theta}{1+\cos \theta}+\frac{\sin \theta}{1+\sin \theta}=-\frac{[アイ]+[ウ] \sqrt{[エ]}}{[オ]} \]
である.
(6)関数$y=f(x)$のグラフを$x$軸方向に$-2$だけ,$y$軸方向に$5$だけ平行移動したグラフは,関数$y=3^x$のグラフと直線$y=x$に関して対称である.このとき,もとの関数は$y=\log_{\mkakko{カ}}(x-[キ])-[ク]$である.
(7)実数$x,\ y$が$2$つの不等式$x^2+y \leqq 4$,$y \geqq 0$を満たすとき,$6x+3y$は$x=[ケ]$,$y=[コ]$のとき最大値$[サシ]$をとり,$x=[スセ]$,$y=[ソ]$のとき最小値$[タチツ]$をとる.
(8)正四面体の面にそれぞれ$1$から$4$の数字のついたさいころを$5$回投げるとき,$4$回以上数字$1$のついた面が下になる確率は$\displaystyle \frac{[テ]}{[トナ]}$である.
玉川大学 私立 玉川大学 2016年 第2問
次の$[ ]$を埋めよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$であるとする.$\mathrm{CA}=x$とおくとき,
\[ \cos \angle \mathrm{BAC}=\frac{[ア]+x^2}{[イ]x} \]
である.$\angle \mathrm{BAC}$の最大は,${[ウエ]}^\circ$であり,このとき,$x=[オ]$である.
(2)$1 \leqq x \leqq 100$とする.このとき,方程式$2x+3y=31$をみたす整数の組$(x,\ y)$の個数は,$[カキ]$個で,$x$が最小となる解は,$(x,\ y)=([ク],\ [ケ])$である.
(3)方程式
\[ 2 \sin^3 x+\cos 2x-\sin x=0 \]
を解くと,$n$を任意の整数として
\[ x=\frac{\pi}{[コ]}+2n \pi,\ \frac{\pi}{[サ]}+\frac{1}{[シ]}n \pi \]
となる.
(4)$2$つのベクトルを$\overrightarrow{a}=(t,\ -1)$,$\overrightarrow{b}=(t+\sqrt{2}-1,\ \sqrt{2})$とする.このとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が鋭角になる条件は,
\[ t>[ス],\quad t<-\sqrt{[セ]} \]
であり,鈍角になる条件は,
\[ -\sqrt{[ソ]}<t<[タ] \]
である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+n$で表されるとき,
\[ a_n=[チ]n \]
である.また,
\[ \sum_{k=1}^n (a_k+1)^2=\frac{n}{[ツ]} ([テ]n^2+[トナ]n+[ニヌ]) \]
である.
東北医科薬科大学 私立 東北医科薬科大学 2015年 第1問
三角形$\mathrm{OAB}$は$\mathrm{OA}=6$,$\mathrm{OB}=2 \sqrt{5}$,$\mathrm{AB}=2 \sqrt{2}$である.点$\mathrm{P}$は辺$\mathrm{AB}$を$k:(1-k)$に,点$\mathrm{Q}$は辺$\mathrm{OB}$を$(1-k^2):k^2$に内分する点である.ただし$0<k<1$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.このとき,次の問に答えなさい.

(1)$\overrightarrow{\mathrm{OP}}=([ア]-[イ]) \overrightarrow{a}+[ウ] \overrightarrow{b}$である.
(2)ベクトル$\overrightarrow{a},\ \overrightarrow{b}$の内積は$\overrightarrow{a} \cdot \overrightarrow{b}=[エオ]$である.
(3)点$\mathrm{B}$から直線$\mathrm{OA}$に下ろした垂線を$\mathrm{BR}$とおくと$\displaystyle \overrightarrow{\mathrm{OR}}=\frac{[カ]}{[キ]} \overrightarrow{a}$である.
(4)$\displaystyle \overrightarrow{\mathrm{RQ}}=-\frac{[ク]}{[ケ]} \overrightarrow{a}+([コ]-{[サ]}^{\mkakko{シ}}) \overrightarrow{b}$である.
(5)ベクトル$\overrightarrow{\mathrm{RP}}$と$\overrightarrow{\mathrm{RQ}}$の内積は
\[ \overrightarrow{\mathrm{RP}} \cdot \overrightarrow{\mathrm{RQ}}=[ス]k^3-[セ]k^2+[ソ]k \]
である.この値は$\displaystyle k=\frac{[タ]}{[チ]}$で最大値$\displaystyle \frac{[ツテ]}{[トナ]}$をとる.
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
九州産業大学 私立 九州産業大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle x=\frac{1+\sqrt{13}}{2}$とするとき,$x^2-x=[ア]$,$x^3-4x+10=[イウ]$である.
(2)不等式$x^2+2x \leqq -x \leqq -x^2-2x+2$の解は$[エオ] \leqq x \leqq [カ]$である.
(3)$m$を定数とする.放物線$C:y=x^2-2mx+9$について,

(i) 放物線$C$が$x$軸に接するとき,$m=\pm [キ]$である.
(ii) 放物線$C$が$x$軸と異なる$2$点で交わり,$x$軸から切り取る線分の長さが$8$であるとき,$m=\pm [ク]$である.
(iii) 放物線$C$が$x$軸の負の部分と異なる$2$点で交わるような定数$m$の値の範囲は$m<[ケコ]$である.

(4)$5$人が$1$回じゃんけんを行うとき,

(i) $1$人が勝ち,$4$人が負ける確率は$\displaystyle \frac{[サ]}{[シス]}$である.

(ii) $2$人が勝ち,$3$人が負ける確率は$\displaystyle \frac{[セソ]}{[タチ]}$である.

(iii) 誰も勝たない,すなわち,あいこになる確率は$\displaystyle \frac{[ツテ]}{[トナ]}$である.
千葉工業大学 私立 千葉工業大学 2015年 第2問
次の各問に答えよ.

(1)すべての実数$x$に対して
\[ x^2-3ax-a+7 \geqq 0 \cdots\cdots (*) \]
が成り立つような定数$a$の値の範囲は$\displaystyle [アイ] \leqq a \leqq \frac{[ウエ]}{[オ]}$である.

$x \leqq 1$であるすべての$x$に対して$(*)$が成り立つような$a$の値の範囲は

$[カキ] \leqq a \leqq [ク]$である.
(2)$\displaystyle F=\sin \left( \theta+\frac{\pi}{6} \right)+\cos \theta$は

$\displaystyle F=\frac{\sqrt{[ケ]}}{[コ]} \sin \theta+\frac{[サ]}{[シ]} \cos \theta$

$\phantom{F}=\sqrt{[ス]} \sin \left( \theta+\displaystyle\frac{[セ]}{[ソ]} \pi \right)$

と変形できる.ここで,$\displaystyle 0 \leqq \frac{[セ]}{[ソ]} \pi<2\pi$とする.$0 \leqq \theta<2\pi$のとき,

$\displaystyle F \leqq -\frac{\sqrt{6}}{2}$をみたす$\theta$の値の範囲は$\displaystyle \frac{[タチ]}{[ツテ]} \pi \leqq \theta \leqq \frac{[トナ]}{[ツテ]} \pi$である.
埼玉工業大学 私立 埼玉工業大学 2014年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{OB}$を$2:3$に内分する点を$\mathrm{N}$とし,線分$\mathrm{AN}$と線分$\mathrm{BM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AP}}=x \overrightarrow{\mathrm{AN}}$,$\overrightarrow{\mathrm{BP}}=y \overrightarrow{\mathrm{BM}}$($x,\ y$は実数)とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$x,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OP}}=(1-[コ]x) \overrightarrow{a}+\frac{[サ]}{[シ]} x \overrightarrow{b}$である.
(2)$\overrightarrow{\mathrm{OP}}$を$y,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[ス]}{[セ]} y \overrightarrow{a}+(1-[ソ] y) \overrightarrow{b}$である.
(3)$x,\ y$の値はそれぞれ$\displaystyle x=\frac{[タ]}{[チツ]},\ y=\frac{[テ]}{[トナ]}$である.
(4)$\triangle \mathrm{OPN}$の面積は$\triangle \mathrm{OAB}$の面積の$\displaystyle \frac{[ニヌ]}{[ネノ]}$倍である.
千葉工業大学 私立 千葉工業大学 2014年 第4問
$xy$平面上に放物線$\displaystyle C:y=\frac{1}{4}x^2+4$と点$\mathrm{P}(p,\ 0)$がある.ただし,$p \geqq 0$とする.$C$上の点$\displaystyle \left( p,\ \frac{1}{4}p^2+4 \right)$における$C$の接線を$\ell$とし,$\ell$に関して,$\mathrm{P}$と対称な点を$\mathrm{Q}(X,\ Y)$とするとき,次の問いに答えよ.

(1)$p=0$のとき,$\mathrm{Q}(0,\ [ア])$である.
(2)$\ell$の方程式は$\displaystyle y=\frac{p}{[イ]}x-\frac{[ウ]}{[エ]}p^2+[オ]$である.線分$\mathrm{PQ}$の中点が$\ell$上にあることから
\[ Y=\frac{p}{[カ]}X+[キ] \cdots\cdots (*) \]
が成り立つ.
(3)$p>0$のとき,$\mathrm{Q}$が,$\mathrm{P}$を通り$\ell$と直交する直線上にあることから
\[ Y=\frac{[クケ]}{p}X+[コ] \cdots\cdots (**) \]
が成り立つ.$(*)$と$(**)$から$p$を消去することにより
\[ X^2+Y^2-[サシ]Y+[スセ]=0 \]
が成り立つことがわかる.
(4)$X$の最小値は$[ソタ]$であり,このとき$p=[チ]$である.$p$が$0$から$[チ]$まで変化するとき,線分$\mathrm{PQ}$が通過する部分の面積は$\displaystyle \frac{[ツ]}{[テ]} \pi+\frac{[トナ]}{[ニ]}$である.
獨協医科大学 私立 獨協医科大学 2014年 第1問
次の問いに答えなさい.

(1)$a$を正の定数とし,$x$についての$2$つの不等式
$\log_3 (x+2a)+\log_3 (x+3a)<\log_3 10ax \cdots\cdots①$
$\log_3 (3x-4)+\log_3 (3x+2)<2 \log_9 (6x-5)+1 \cdots\cdots②$
を考える.
$①$の解は
\[ [ア]a<x<[イ]a \]
である.
$②$の解は
\[ \frac{[ウ]}{[エ]}<x<\frac{[オ]}{[カ]} \]
である.
$①,\ ②$をともに満たす実数$x$が存在するとき,$a$のとり得る値の範囲は
\[ \frac{[キ]}{[ク]}<a<\frac{[ケ]}{[コ]} \]
である.
(2)放物線$\displaystyle C:y=\frac{1}{2}x^2$上に$2$点$\mathrm{P}$,$\mathrm{Q}$がある.$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$p,\ q$としたとき,$p,\ q$は$q<p$を満たす整数で,$p>0$,$p+q$は正の偶数とする.
また,点$\mathrm{P}$における放物線$C$の接線を$\ell$,$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線を$m$とし,直線$\ell,\ m$が$x$軸の正の向きとなす角をそれぞれ$\displaystyle \alpha,\ \beta \left( 0<\alpha<\frac{\pi}{2},\ 0<\beta<\frac{\pi}{2} \right)$,$2$直線$\ell,\ m$のなす角を$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$とする.
$p=5,\ q=1$のとき
\[ \tan \alpha=[サ],\quad \tan \beta=[シ] \]
であり
\[ \tan \theta=\frac{1}{[ス]} \]
である.
また,$\displaystyle \tan \theta=\frac{1}{7}$を満たす整数$p,\ q$の組$(p,\ q)$をすべてあげると,
\[ (p,\ q)=([セ],\ [ソ]),\ ([タチ],\ [ツテ]),\ ([トナ],\ [ニヌネ]) \]
である.ただし,$[セ]<[タチ]<[トナ]$とする.
西南学院大学 私立 西南学院大学 2013年 第3問
数列$a_{n+1}=(-1)^{n+1}a_n+1 (n=1,\ 2,\ 3,\ \cdots)$について,以下の問に答えよ.

(1)$a_1=0$のとき,$a_4=[テ]$であり,$\displaystyle \sum_{k=1}^{80}a_k=[トナ]$である.
(2)$a_1=1$のとき,$a_{99}=[ニヌ]$であり,$\displaystyle \sum_{k=1}^{89}a_k-\sum_{k=1}^{80}a_k=[ネ]$である.
スポンサーリンク

「トナ」とは・・・

 まだこのタグの説明は執筆されていません。