タグ「ウエ」の検索結果

1ページ目:全55問中1問~10問を表示)
獨協医科大学 私立 獨協医科大学 2016年 第1問
次の問いに答えなさい.

(1)$m$を実数の定数とする.$x$についての$2$つの$2$次不等式

$x^2-4x+3<0 \qquad\hspace{2.65mm} \cdots\cdots \ ①$
$x^2-2mx-8m^2<0 \cdots\cdots \ ②$

を考える.$①$の解は
\[ [ア]<x<[イ] \]
である.
$①$を満たすすべての実数が$②$を満たすような$m$の値の範囲は
\[ m \leqq \frac{[ウエ]}{[オ]}, \frac{[カ]}{[キ]} \leqq m \]
である.
また,$①,\ ②$をともに満たす実数$x$が存在しないような$m$の値の範囲は
\[ \frac{[クケ]}{[コ]} \leqq m \leqq \frac{[サ]}{[シ]} \]
である.
(2)$4$進法で表された$123_{(4)}$を$10$進法で表すと,$[スセ]$である.
整数$n$を$4$進法で表したとき,$3$桁になった.このとき,$n$のとり得る値の範囲を$10$進法で表すと
\[ [ソタ] \leqq n \leqq [チツ] \]
である.
$10$進法で表された$3^{20}$を$4$進法で表すと,その桁数は$[テト]$である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
北海道薬科大学 私立 北海道薬科大学 2016年 第4問
関数$\displaystyle f(x)=\left( \log_4 \frac{x^2}{4} \right)^4-\log_2 \frac{x^4}{32} (1 \leqq x \leqq 16)$について,次の設問に答えよ.

(1)$\log_2 x$の最大値は$[ア]$,最小値は$[イ]$である.
(2)$f(x)$は
\[ f(x)=\left( \log_2 x+[ウエ] \right)^{\mkakko{オ}}+[カキ] \log_2 x+[ク] \]
と表すことができる.
(3)$f(x)$は

$x=[ケコ]$のとき,最大値$[サシ]$
$x=[ス]$のとき,最小値$[セソ]$

をとる.
東邦大学 私立 東邦大学 2016年 第12問
$a$は正の整数で,$3$次方程式$x^3-20x^2+(100-a)x+8a-23=0$が正の整数解をただ$1$つもつとする.このとき,$a=[ウエ]$である.
東京医科大学 私立 東京医科大学 2016年 第1問
次の問いに答えよ.

(1)任意の正の数$t$に対して,座標平面上の$3$点$\mathrm{P}_t(3-t,\ 6+2t)$,$\mathrm{O}(0,\ 0)$,$\mathrm{A}(3,\ 6)$を頂点とする三角形$\mathrm{P}_t \mathrm{OA}$を考える.$\angle \mathrm{P}_t \mathrm{OA}=\theta_t$とすれば,
\[ \lim_{t \to \infty} \cos \theta_t=\frac{[ア]}{[イ]} \]
である.
(2)$a$を正の定数とする.$x$についての$2$次方程式$x^2+ax+4a=0$の$1$つの解が他の解の$4$倍であるとき,
\[ a=[ウエ] \]
である.
東京医科大学 私立 東京医科大学 2016年 第3問
$a$を実数の定数とし,関数
\[ f(x)=|2x^3-x^2-ax-36| \]
を考える.関数$f(x)$は$x=p$で微分可能で,かつ$f(p)=0$であるとする.このとき
\[ p=[アイ],\quad a=[ウエ] \]
であり,かつ関数$f(x)$は$\displaystyle x=\frac{[オ]}{[カ]}$では微分可能でない.
玉川大学 私立 玉川大学 2016年 第2問
次の$[ ]$を埋めよ.

(1)三角形$\mathrm{ABC}$において,$\mathrm{AB}=2$,$\mathrm{BC}=\sqrt{3}$であるとする.$\mathrm{CA}=x$とおくとき,
\[ \cos \angle \mathrm{BAC}=\frac{[ア]+x^2}{[イ]x} \]
である.$\angle \mathrm{BAC}$の最大は,${[ウエ]}^\circ$であり,このとき,$x=[オ]$である.
(2)$1 \leqq x \leqq 100$とする.このとき,方程式$2x+3y=31$をみたす整数の組$(x,\ y)$の個数は,$[カキ]$個で,$x$が最小となる解は,$(x,\ y)=([ク],\ [ケ])$である.
(3)方程式
\[ 2 \sin^3 x+\cos 2x-\sin x=0 \]
を解くと,$n$を任意の整数として
\[ x=\frac{\pi}{[コ]}+2n \pi,\ \frac{\pi}{[サ]}+\frac{1}{[シ]}n \pi \]
となる.
(4)$2$つのベクトルを$\overrightarrow{a}=(t,\ -1)$,$\overrightarrow{b}=(t+\sqrt{2}-1,\ \sqrt{2})$とする.このとき,$\overrightarrow{a}$と$\overrightarrow{b}$のなす角が鋭角になる条件は,
\[ t>[ス],\quad t<-\sqrt{[セ]} \]
であり,鈍角になる条件は,
\[ -\sqrt{[ソ]}<t<[タ] \]
である.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+n$で表されるとき,
\[ a_n=[チ]n \]
である.また,
\[ \sum_{k=1}^n (a_k+1)^2=\frac{n}{[ツ]} ([テ]n^2+[トナ]n+[ニヌ]) \]
である.
東洋大学 私立 東洋大学 2016年 第1問
次の各問に答えよ.

(1)整式$(a+b-7)^3-(a-b+7)^3$を因数分解すると,
\[ 2(b-[ア])([イ]a^2+b^2-[ウエ]b+[オカ]) \]
となる.
(2)$\log_2 x+\log_2 y=4$のとき,$x^2+y^2$の最小値は$[キク]$で,そのときの$x,\ y$の値は$x=[ケ]$,$y=[コ]$である.
(3)各辺の長さが$\mathrm{AB}=10$,$\mathrm{BC}=8$,$\mathrm{CA}=6$である$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$の$2$等分線と辺$\mathrm{BC}$との交点を$\mathrm{D}$,$\angle \mathrm{A}$の外角の$2$等分線と辺$\mathrm{BC}$の延長との交点を$\mathrm{E}$とする.このとき,線分$\mathrm{DE}$の長さは$[サシ]$である.
(4)$k$を定数とするとき,方程式$x^3+3x^2-9x-k=0$が異なる$3$個の実数解をもつための必要十分条件は$-[ス]<k<[セソ]$である.
東洋大学 私立 東洋大学 2016年 第2問
厚さ$1 \, \mathrm{cm}$のアクリル板で半球形の容器を作るとき,アクリル板の強度を考慮すると,最大で$50 \, l$の容積をもつ容器を作ることができるものとする.このアクリル板の厚さを$1 \, \mathrm{cm}$増やすごとに,作れる容器の最大の容積は$1.3$倍になる.一方,このアクリル板は,厚さ$1 \, \mathrm{cm}$のときに光の透過率が$90 \, \%$で,厚さを$1 \, \mathrm{cm}$増やすごとに透過率は$0.9$倍になる.次の各問に答えよ.ただし,アクリル板は$1 \, \mathrm{cm}$単位の加工しかできないこととし,必要ならば$\log_{10}2=0.3010$,$\log_{10}3=0.4771$を用いてもよい.

(1)アクリル板の厚さを$2 \, \mathrm{cm}$としたとき,その透過率は$[アイ] \, \%$になる.
(2)アクリル板の厚さを$2 \, \mathrm{cm}$としたとき,容器の容積は最大で$[ウエ] \, l$になる.
(3)アクリル板の透過率を$50 \, \%$以上としながら,容積の最も大きな容器を作りたい.このとき,アクリル板の厚さを$[オ] \, \mathrm{cm}$とすればよく,その容器の容積は,小数第$1$位を切り捨てて$[カキク] \, l$である.
近畿大学 私立 近畿大学 2016年 第3問
$i$を虚数単位とする.異なる$3$つの複素数$\alpha,\ \beta,\ \gamma$の間に等式$\gamma-i \beta=(1-i) \alpha$が成り立つものとする.さらに,$\alpha$は方程式$|\alpha-2|=|\alpha-2 \sqrt{3|i}$を満たすとする.複素数平面において$3$点$\mathrm{A}(\alpha)$,$\mathrm{B}(\beta)$,$\mathrm{C}(\gamma)$を頂点とする$\triangle \mathrm{ABC}$を考える.

(1)$\angle \mathrm{BAC}={[アイ]}^\circ$,$\angle \mathrm{ABC}={[ウエ]}^\circ$,$\angle \mathrm{ACB}={[オカ]}^\circ$である.

(2)点$\mathrm{A}$が虚軸上にあるとき,$\displaystyle \alpha=\frac{[キ] \sqrt{[ク]}}{[ケ]}i$である.さらに点$\mathrm{B}$が実軸上にあるとすると,点$\mathrm{C}$は方程式
\[ |\gamma|=|\gamma-\delta| \quad \text{(ただし$\delta$は$0$と異なる定数)} \]
を満たす.このとき$\displaystyle \delta=\frac{[コ] \sqrt{[サ]}}{[シ]}$である.

(3)点$\mathrm{B}$および点$\mathrm{C}$がそれぞれ,実軸上,虚軸上にあるとき
\[ \alpha=[ス]-\sqrt{[セ]}+\left( [ソタ]+\sqrt{[チ]} \right) i \]
である.さらに,$\gamma$が方程式$|\gamma-2|=|\gamma-2 \sqrt{3|i}$を満たすとき
\[ \beta=\frac{[ツ]-[テ] \sqrt{[ト]}}{[ナ]} \]
である.
センター試験 問題集 センター試験 2015年 第2問
$\kagiichi$ \ 条件$p_1,\ p_2,\ q_1,\ q_2$の否定をそれぞれ$\overline{p_1},\ \overline{p_2},\ \overline{q_1},\ \overline{q_2}$と書く.

(1)次の$[ア]$に当てはまるものを,下の$\nagamarurei$~$\nagamarusan$のうちから一つ選べ.

命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($q_1$かつ$q_2$)」の対偶は$[ア]$である.

$\nagamarurei$ ($\overline{p_1}$または$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$または$\overline{q_2}$)
$\nagamaruichi$ ($\overline{q_1}$または$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$または$\overline{p_2}$)
$\nagamaruni$ ($\overline{q_1}$かつ$\overline{q_2}$) $\Longrightarrow$ ($\overline{p_1}$かつ$\overline{p_2}$)
$\nagamarusan$ ($\overline{p_1}$かつ$\overline{p_2}$) $\Longrightarrow$ ($\overline{q_1}$かつ$\overline{q_2}$)
(2)自然数$n$に対する条件$p_1,\ p_2,\ q_1,\ q_2$を次のように定める.
\[\begin{array}{ll}
p_1:n \text{は素数である} & p_2:n+2 \text{は素数である} \\
q_1:n+1 \text{は} 5 \text{の倍数である} & q_2:n+1 \text{は}6 \text{の倍数である}
\end{array} \]
$30$以下の自然数$n$のなかで$[イ]$と$[ウエ]$は
命題「($p_1$かつ$p_2$) $\Longrightarrow$ ($\overline{q_1}$かつ$q_2$)」
の反例となる.
\mon[$\kagini$] $\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=5$,$\angle \mathrm{ABC}={120}^\circ$とする.

このとき,$\mathrm{AC}=[オ]$,$\displaystyle \sin \angle \mathrm{ABC}=\frac{\sqrt{[カ]}}{[キ]}$であり,
$\displaystyle \sin \angle \mathrm{BCA}=\frac{[ク] \sqrt{[ケ]}}{[コサ]}$である.

直線$\mathrm{BC}$上に点$\mathrm{D}$を,$\mathrm{AD}=3 \sqrt{3}$かつ$\angle \mathrm{ADC}$が鋭角,となるようにとる.点$\mathrm{P}$を線分$\mathrm{BD}$上の点とし,$\triangle \mathrm{APC}$の外接円の半径を$R$とすると,$R$のとり得る値の範囲は$\displaystyle \frac{[シ]}{[ス]} \leqq R \leqq [セ]$である.
スポンサーリンク

「ウエ」とは・・・

 まだこのタグの説明は執筆されていません。