タグ「アイ」の検索結果

4ページ目:全69問中31問~40問を表示)
北海道薬科大学 私立 北海道薬科大学 2014年 第4問
$3$次関数$f(x)=x^3-3x^2-3ax$($a$は実数)が$x=\alpha$で極大値,$x=\beta$で極小値($\alpha,\ \beta$は実数)をとるとき,次の設問に答えよ.

(1)$a$の値の範囲は$a>[アイ]$である.
(2)$\alpha-\beta=[ウエ] \sqrt{a+[オ]}$である.
(3)$f(x)$の極大値と極小値の差が$\displaystyle \frac{1}{2}$のとき,$a$の値は$\displaystyle \frac{[カキ]}{[ク]}$である.
金沢工業大学 私立 金沢工業大学 2014年 第3問
$m$を定数とする.$\mathrm{O}$を原点とする座標平面において,円$x^2+y^2=4$と直線$y=mx+4$が異なる$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.$2$点$\mathrm{A}$,$\mathrm{B}$の$x$座標をそれぞれ$\alpha,\ \beta$とする.

(1)$\displaystyle \alpha+\beta=\frac{[アイ] m}{[ウ]+m^2},\ \alpha\beta=\frac{[エオ]}{[ウ]+m^2}$である.
(2)$\displaystyle |\overrightarrow{\mathrm{AB}}|=\frac{[カ] \sqrt{m^2-[キ]}}{\sqrt{[ク]+m^2}}$である.
(3)$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=0$のとき,$m=\pm \sqrt{[ケ]}$,$|\overrightarrow{\mathrm{AB}}|=[コ] \sqrt{[サ]}$である.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第1問
放物線$y=-x^2+8x$と直線$y=2x+t (t \geqq 0)$と直線$x=0$,$x=6$とで囲まれた図形の面積を$S(t)$とする.このとき,次の問に答えなさい.

(1)$S(12)=[アイ]$である.
(2)$S(t)$が$3$つの部分の面積の和になるのは$[ウ]<t<[エ]$のときである.このとき$S(t)$は
\[ [オ](t-[カ])+\frac{[キ]}{[ク]}([ケ]-t) \sqrt{[ケ]-t} \]
である.
(3)以下$[ウ]<t<[エ]$で考える.$A=\sqrt{[ケ]-t}$とおく.$S(t)$を$A$で表すと
\[ S(t)=\frac{[コ]}{[サ]}A^3-[シ]A^2+[スセ] \]
となる.また$\displaystyle A=\frac{[ソ]}{[タ]}$のとき$S(t)$は最小値$\displaystyle \frac{[チツ]}{[テ]}$をとる.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第3問
三角形$\mathrm{OAB}$において線分$\mathrm{OA}$を$2:5$に内分する点を$\mathrm{C}$,線分$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{D}$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{CD}}=\frac{[アイ]}{[ウ]} \overrightarrow{\mathrm{OA}}+\frac{[エ]}{[オ]} \overrightarrow{\mathrm{OB}}$である.
(2)線分$\mathrm{CD}$を$2:1$に内分する点を$\mathrm{E}$とおくと$\overrightarrow{\mathrm{OE}}=\frac{[カ]}{[キク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}}$である.
(3)三角形$\mathrm{OAB}$は$3$辺の長さの比が$\mathrm{OA}:\mathrm{OB}:\mathrm{AB}=5:4:7$で,外接円の半径が$\displaystyle \frac{35 \sqrt{6}}{12}$とする.このとき$\displaystyle \cos \angle \mathrm{AOB}=\frac{[サシ]}{[ス]}$であり,また三角形$\mathrm{OAB}$の面積は$[セソ] \sqrt{[タ]}$である.
(4)$\alpha,\ \beta$は実数で,点$\mathrm{P}$,$\mathrm{Q}$は$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=\beta \overrightarrow{\mathrm{OB}}$を満たす点とする.$3$点$\mathrm{P}$,$\mathrm{E}$,$\mathrm{Q}$が同一直線上にあり,$\overrightarrow{\mathrm{PD}}$と$\overrightarrow{\mathrm{CQ}}$が平行である.ただし点$\mathrm{P}$は点$\mathrm{C}$と異なるとするとき$\displaystyle \alpha=\frac{[チ]}{[ツ]}$,$\displaystyle \beta=\frac{[テ]}{[ト]}$である.
千葉工業大学 私立 千葉工業大学 2014年 第1問
次の各問に答えよ.

(1)$\displaystyle x<\frac{\sqrt{3}}{1-\sqrt{3}}$をみたす最大の整数$x$は$[アイ]$である.
(2)等式$\displaystyle \frac{x+5}{x^2+x-2}=\frac{a}{x-1}+\frac{b}{x+2}$が$x$についての恒等式であるとき,$a=[ウ]$,$b=[エオ]$である.
(3)点$(-4,\ a)$と直線$3x+4y-1=0$との距離が$1$であるとき,$a=[カ]$または$\displaystyle \frac{[キ]}{[ク]}$である.
(4)$\displaystyle \left( x-\frac{2}{3} \right)^9$の展開式において,$x^8$の係数は$[ケコ]$であり,$x^7$の係数は$[サシ]$である.
(5)$\overrightarrow{a}=(3,\ t+1,\ 1)$と$\displaystyle \overrightarrow{b}=\left( 2,\ -3,\ \frac{3}{2}t \right)$が垂直であるとき,$t=[ス]$である.
(6)$\displaystyle (5^{\frac{1}{3}}-5^{-\frac{1}{3}})(5^{\frac{2}{3}}+1+5^{-\frac{2}{3}})=\frac{[セソ]}{[タ]}$である.
(7)$\log_{10}2=p$とおくと,$\log_{10}5=[チ]-p$であり,$\displaystyle \log_4 500=\frac{[ツ]-p}{[テ]p}$である.
(8)$\displaystyle \int_{-1}^2 (-x^2+3 |x|) \, dx=\frac{[ト]}{[ナ]}$である.
金沢工業大学 私立 金沢工業大学 2014年 第1問
次の問いに答えよ.

(1)$p=(\sqrt{3}+\sqrt{5})^2$,$q=(\sqrt{3}-\sqrt{5})^2$のとき$p+q=[アイ]$,$pq=[ウ]$,$p^2+q^2=[エオカ]$である.

(2)連立不等式$\left\{ \begin{array}{r}
|2x-9| \leqq 5 \\
9-2x \leqq 4
\end{array} \right.$の解は$\displaystyle \frac{[キ]}{[ク]} \leqq x \leqq [ケ]$である.

(3)$(2x-1)^5(y-2)^4$の展開式における$x^2y^3$の項の係数は$[コサシ]$である.
(4)${0}^\circ<\theta<{90}^\circ$で,$\displaystyle \tan \theta=\frac{4}{3}$のとき,
\[ \frac{\sin (\theta+{90}^\circ)+\tan (\theta+{90}^\circ)}{\sin ({180}^\circ-\theta)+\tan ({180}^\circ-\theta)}=\frac{[ス]}{[セソ]} \]
である.
(5)$p,\ q$を定数とし,$q<0$とする.$2$次関数$y=px^2+qx+2q$のグラフの頂点の座標が$(-4q,\ -40)$のとき,$\displaystyle p=\frac{[タ]}{[チ]}$,$q=[ツテ]$である.
(6)赤玉が$5$個,白玉が$3$個入っている袋がある.この袋の中から玉を同時に$2$個取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[ト]}{[ナニ]}$である.
(7)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$個のさいころを同時に投げて,それぞれの出る目を$a,\ b,\ c$とする.このとき,積$abc$が奇数になる組$(a,\ b,\ c)$は$[ヌネ]$組あり,偶数になる組$(a,\ b,\ c)$は$[ノハヒ]$組ある.
(8)$\triangle \mathrm{ABC}$において,$\mathrm{AP}:\mathrm{PB}=\mathrm{AQ}:\mathrm{QC}=1:3$となるように点$\mathrm{P}$を辺$\mathrm{AB}$上に,点$\mathrm{Q}$を辺$\mathrm{AC}$上にとる.線分$\mathrm{BQ}$と線分$\mathrm{CP}$の交点を$\mathrm{R}$とすると,$\displaystyle \triangle \mathrm{PQR}=\frac{[フ]}{[ヘホ]} \triangle \mathrm{BCR}$である.
金沢工業大学 私立 金沢工業大学 2014年 第5問
次の問いに答えよ.

(1)$k$を定数とする.整式$3x^3+16x^2+35x+k$を整式$A$で割ると,商が$x+3$で,余りが$5x-7$である.このとき,$k=[アイ]$であり,$A=[ウ]x^2+[エ]x+[オ]$である.
(2)$a,\ b,\ c$を定数とする.方程式$x^3+ax^2+bx+c=0$の解が$-2,\ -1 \pm \sqrt{2}i$であるとき,$a=[カ]$,$b=[キ]$,$c=[ク]$である.
千葉工業大学 私立 千葉工業大学 2014年 第3問
次の各問に答えよ.

(1)折れ線$L:y=4 |x|-5 |x-2|+4 |x-3|$は
$x<0$のとき,$y=[アイ]x+[ウ]$
$0 \leqq x<2$のとき,$y=[エ]x+[オ]$
$2 \leqq x<3$のとき,$y=[カキ]x+[クケ]$
$3 \leqq x$のとき,$y=3x-2$
と表される.$L$と直線$y=2x+k$($k$は定数)の共有点が$4$個となるような$k$の値の範囲は,$[コ]<k<[サ]$である.
(2)数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を初項$a_1=3$,公差$4$の等差数列とすると,$a_{50}=[シスセ]$である.数列$\{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を初項$b_1=5$で,$b_{50}=299$をみたす等差数列とすると,$\{b_n\}$の公差は$[ソ]$である.
集合$A,\ B$を
\[ A=\{a_1,\ a_2,\ \cdots,\ a_{50} \},\quad B=\{b_1,\ b_2,\ \cdots,\ b_{50} \} \]
と定める.共通部分$A \cap B$の要素のうち,最小のものは$[タチ]$であり,$A \cap B$の要素の個数は$[ツテ]$である.
杏林大学 私立 杏林大学 2014年 第1問
$[シ]$の解答は解答群の中から最も適当なものを$1$つ選べ.

$n$を$100$以下の自然数とし,$n$の約数の個数を$f(n)$,空集合を$\phi$とする.

(1)$f(48)=[アイ]$であり,$f(n)=9$を満たす最小の自然数は$n=[ウエ]$である.$f(n)=5$を満たす$n$の個数は$[オ]$個であり,$f(n)=6$を満たす$n$の個数は$[カキ]$個である.
(2)$f(n)$の最大値は$[クケ]$である.したがって,$f(f(n))>4$を満たす最小の自然数は$n=[コサ]$となる.
(3)$f(n)=2$を満たす$100$以下の自然数$n$の集合を$A$,$100$以下の素数の集合を$B$とすると,$[シ]$が成り立つ.

$[シ]$の解答群
\mon[$①$] $A \in B$
\mon[$②$] $B \in A$
\mon[$③$] $A=B$
\mon[$④$] $A \subset B$かつ$A \neq B$
\mon[$⑤$] $B \subset A$かつ$A \neq B$
\mon[$⑥$] $A \cap B=\phi$
\mon[$④chi$] $A \cap B \neq \phi$かつ$A \neq A \cup B \neq B$
獨協医科大学 私立 獨協医科大学 2014年 第4問
行列$A=r \left( \begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array} \right)$で表される$1$次変換$f$について考える.点$\mathrm{P}_0$の座標を$(1,\ 0)$とし,$n$を正の整数とするとき,$f$によって点$\mathrm{P}_{n-1}$が移される点を$\mathrm{P}_n$とする.また,$\displaystyle \sum_{k=0}^{n-1} \overrightarrow{\mathrm{OP}_k}=\overrightarrow{\mathrm{OQ}_n}$となる点$\mathrm{Q}_n$の座標を$(x_n,\ y_n)$とし,$n \to \infty$のときに$x_n,\ y_n$がともに収束する場合の点$\mathrm{Q}_n$の極限値$\displaystyle \mathrm{Q} \left( \lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n \right)$を求めよう.

(1)$\displaystyle r=\frac{1}{2}$,$\displaystyle \theta=\frac{\pi}{3}$のとき,$\displaystyle A^3=\frac{[アイ]}{[ウ]} \left( \begin{array}{cc}
[エ] & [オ] \\
[オ] & [エ]
\end{array} \right)$であり,$\mathrm{P}_7$の座標は$\displaystyle \left( \frac{[カ]}{[キクケ]},\ \frac{\sqrt{[コ]}}{[キクケ]} \right)$である.
(2)$E-A$が逆行列をもたない$r,\ \theta (r \geqq 0,\ 0 \leqq \theta<2\pi)$の条件は,$r=[サ]$かつ$\theta=[シ]$である.ただし,$E$は単位行列とする.
$E-A$が逆行列をもつとき,$n$を$2$以上の整数とすると
$(E-A)(E+A+A^2+\cdots +A^{n-1})=E-A^n$より
\[ E+A+A^2+\cdots +A^{n-1}=(E-A)^{-1}(E-A^n) \]
また,$\displaystyle (E-A)^{-1}=\frac{1}{r^2-2r \cos \theta+1} \left( \begin{array}{cc}
1-r \cos \theta & -r \sin \theta \\
r \sin \theta & 1-r \cos \theta
\end{array} \right)$であるから
$\displaystyle (E-A)^{-1}(E-A^n)=\frac{1}{r^2-2r \cos \theta+1}T$とすると
\[ T=\left( \begin{array}{cc}
1-r \cos \theta-r^n [ス]+r^{n+1} [セ] & -r \sin \theta+r^n [ソ]-r^{n+1} [タ] \\
r \sin \theta-r^n [ソ]+r^{n+1} [タ] & 1-r \cos \theta-r^n [ス]+r^{n+1} [セ]
\end{array} \right) \]
である.ただし,$[ス]$,$[セ]$,$[ソ]$,$[タ]$には,次の$\nagamaruichi$~$\nagamaruroku$の中から最も適切なものをそれぞれ一つ選ぶこと.なお,同じ選択肢を選んでもよいものとする.
\[ \nagamaruichi \ \sin n\theta \quad \nagamaruni \ \cos n\theta \quad \nagamarusan \ \sin (n-1) \theta \quad \nagamarushi \ \cos (n-1) \theta \quad \nagamarugo \ \sin (n+1) \theta \quad \nagamaruroku \ \cos (n+1) \theta \]
$0 \leqq r<1$のとき,$\lim_{n \to \infty} x_n,\ \lim_{n \to \infty} y_n$はともに収束し,さらに$\displaystyle \theta=\frac{\pi}{3}$とすると,
\[ \mathrm{Q}=\left( \frac{[チ]-r}{[ツ]-2r+[テ]r^2},\ \frac{\sqrt{[ト]}r}{[ツ]-2r+[テ]r^2} \right) \]
である.
スポンサーリンク

「アイ」とは・・・

 まだこのタグの説明は執筆されていません。