タグ「さいころ」の検索結果

2ページ目:全413問中11問~20問を表示)
東京工業大学 国立 東京工業大学 2016年 第2問
$\triangle \mathrm{ABC}$を一辺の長さ$6$の正三角形とする.サイコロを$3$回振り,出た目を順に$X,\ Y,\ Z$とする.出た目に応じて,点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$をそれぞれ線分$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$上に
\[ \overrightarrow{\mathrm{BP}}=\frac{X}{6} \overrightarrow{\mathrm{BC}},\quad \overrightarrow{\mathrm{CQ}}=\frac{Y}{6} \overrightarrow{\mathrm{CA}},\quad \overrightarrow{\mathrm{AR}}=\frac{Z}{6} \overrightarrow{\mathrm{AB}} \]
をみたすように取る.

(1)$\triangle \mathrm{PQR}$が正三角形になる確率を求めよ.
(2)点$\mathrm{B}$,$\mathrm{P}$,$\mathrm{R}$を互いに線分で結んでできる図形を$T_1$,点$\mathrm{C}$,$\mathrm{Q}$,$\mathrm{P}$を互いに線分で結んでできる図形を$T_2$,点$\mathrm{A}$,$\mathrm{R}$,$\mathrm{Q}$を互いに線分で結んでできる図形を$T_3$とする.$T_1,\ T_2,\ T_3$のうち,ちょうど$2$つが正三角形になる確率を求めよ.
(3)$\triangle \mathrm{PQR}$の面積を$S$とし,$S$のとりうる値の最小値を$m$とする.$m$の値および$S=m$となる確率を求めよ.
大阪大学 国立 大阪大学 2016年 第1問
$1$以上$6$以下の$2$つの整数$a,\ b$に対し,関数$f_n(x) (n=1,\ 2,\ 3,\ \cdots)$を次の条件(ア),(イ),(ウ)で定める.

(ア) $f_1(x)=\sin (\pi x)$
(イ) $\displaystyle f_{2n}(x)=f_{2n-1} \left( \frac{1}{a}+\frac{1}{b}-x \right) \qquad (n=1,\ 2,\ 3,\ \cdots)$
(ウ) $f_{2n+1}(x)=f_{2n}(-x) \qquad \qquad \qquad \ \,\!(n=1,\ 2,\ 3,\ \cdots)$

以下の問いに答えよ.

(1)$a=2,\ b=3$のとき,$f_5(0)$を求めよ.

(2)$a=1,\ b=6$のとき,$\displaystyle \sum_{k=1}^{100} (-1)^k f_{2k}(0)$を求めよ.

(3)$1$個のさいころを$2$回投げて,$1$回目に出る目を$a$,$2$回目に出る目を$b$とするとき,$f_6(0)=0$となる確率を求めよ.
千葉大学 国立 千葉大学 2016年 第2問
数直線上の点$\mathrm{Q}$は,はじめは原点$x=0$にあり,さいころを投げるたびに以下のルールに従って移動する.$\mathrm{Q}$が$x=a$にあるとき,
\begin{itemize}
出た目が$1$ならば$x=a$にとどまる.
出た目が$2,\ 3$ならば$x=a+1$へ動く.
出た目が$4,\ 5,\ 6$ならば$x=0$に戻る($a=0$ならば動かない).
\end{itemize}

(1)整数$a \geqq 0$に対して,さいころを$3$回投げたとき,$\mathrm{Q}$が$x=a$にある確率を求めよ.
(2)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=0$にある確率を求めよ.
(3)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=1$にある確率を求めよ.
千葉大学 国立 千葉大学 2016年 第2問
数直線上の点$\mathrm{Q}$は,はじめは原点$x=0$にあり,さいころを投げるたびに以下のルールに従って移動する.$\mathrm{Q}$が$x=a$にあるとき,
\begin{itemize}
出た目が$1$ならば$x=a$にとどまる.
出た目が$2,\ 3$ならば$x=a+1$へ動く.
出た目が$4,\ 5,\ 6$ならば$x=0$に戻る($a=0$ならば動かない).
\end{itemize}

(1)整数$a \geqq 0$に対して,さいころを$3$回投げたとき,$\mathrm{Q}$が$x=a$にある確率を求めよ.
(2)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=0$にある確率を求めよ.
(3)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=1$にある確率を求めよ.
千葉大学 国立 千葉大学 2016年 第2問
数直線上の点$\mathrm{Q}$は,はじめは原点$x=0$にあり,さいころを投げるたびに以下のルールに従って移動する.$\mathrm{Q}$が$x=a$にあるとき,
\begin{itemize}
出た目が$1$ならば$x=a$にとどまる.
出た目が$2,\ 3$ならば$x=a+1$へ動く.
出た目が$4,\ 5,\ 6$ならば$x=0$に戻る($a=0$ならば動かない).
\end{itemize}

(1)整数$a \geqq 0$に対して,さいころを$3$回投げたとき,$\mathrm{Q}$が$x=a$にある確率を求めよ.
(2)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=0$にある確率を求めよ.
(3)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=1$にある確率を求めよ.
千葉大学 国立 千葉大学 2016年 第6問
数直線上の点$\mathrm{Q}$は,はじめは原点$x=0$にあり,さいころを投げるたびに以下のルールに従って移動する.$\mathrm{Q}$が$x=a$にあるとき,
\begin{itemize}
出た目が$1$ならば$x=a$にとどまる.
出た目が$2,\ 3$ならば$x=a+1$へ動く.
出た目が$4,\ 5,\ 6$ならば$x=0$に戻る($a=0$ならば動かない).
\end{itemize}

(1)整数$a \geqq 0$に対して,さいころを$3$回投げたとき,$\mathrm{Q}$が$x=a$にある確率を求めよ.
(2)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=0$にある確率を求めよ.
(3)さいころを$n$回投げたとき,$\mathrm{Q}$が$x=1$にある確率を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第6問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
鹿児島大学 国立 鹿児島大学 2016年 第5問
次の各問いに答えよ.

(1)$1$個のさいころを$10$回投げるとき,$1$または$2$の目が出る回数$X$の期待値$E(X)$と標準偏差$\sigma(X)$を求めよ.
(2)確率変数$X$の確率密度関数が$\displaystyle f(x)=\frac{2}{25}x (0 \leqq x \leqq 5)$で与えられているとき,$X$の期待値$E(X)$と分散$V(X)$を求めよ.
(3)$2$つの事象$A,\ B$について,$A$と$B$が独立なら$\overline{A}$と$B$も独立であることを示せ.ただし$\overline{A}$は$A$の余事象を表す.
小樽商科大学 国立 小樽商科大学 2016年 第3問
次の$[ ]$の中を適当に補え.

(1)$\displaystyle \frac{5561}{6059}$をこれ以上約分できない分数に直すと$[ ]$.
(2)次の漸化式で定められる数列$\{a_n\}$を考える.
\[ a_1=2,\quad a_{n+1}=(a_n+n)(a_n-n) \]
このとき,$\displaystyle \sum_{k=1}^5 a_k$を求めると$[ ]$.
(3)数直線上で,点$\mathrm{P}$の出発点を原点$\mathrm{O}$とし,サイコロを投げたとき,出た目に応じて,次の規則で点$\mathrm{P}$を動かすものとする.
\begin{itemize}
出た目が$1$または$2$のとき,点$\mathrm{P}$を正の方向へ$1$だけ動かす.
出た目が$3$または$4$のとき,点$\mathrm{P}$を負の方向へ$1$だけ動かす.
出た目が$5$または$6$のとき,点$\mathrm{P}$を原点$\mathrm{O}$に戻す.
\end{itemize}
サイコロを$3$回投げたとき,点$\mathrm{P}$が原点$\mathrm{O}$にいる確率は$[ ]$.
スポンサーリンク

「さいころ」とは・・・

 まだこのタグの説明は執筆されていません。