タグ「y^2」の検索結果

63ページ目:全631問中621問~630問を表示)
ノートルダム清心女子大学 私立 ノートルダム清心女子大学 2010年 第1問
次の設問に答えなさい.

(1)次の計算をしなさい.
\[ (8a^3b^2)(2a^2b)^2 \left( -\frac{1}{4}ab^2 \right)^3 \]
(2)次の$(ⅰ)$~$(ⅲ)$の場合について,それぞれ$x$を求めなさい.ただし,${0}^\circ \leqq x \leqq {90}^\circ$とします.

(i) $\sin {58}^\circ=\cos x$
(ii) $\cos {169}^\circ=-\cos x$
(iii) $\displaystyle \tan {64}^\circ=\frac{1}{\tan x}$

(3)$0<x<y$のとき,次の式を簡単にしなさい.
\[ \sqrt{x^2-2xy+y^2}+\sqrt{x^2-4xy+4y^2} \]
神戸薬科大学 私立 神戸薬科大学 2010年 第1問
以下の文中の$[ ]$の中にいれるべき数または式を求めよ.

(1)$x+y=\sqrt{3}$,$x^2+y^2=5$のとき,$x^3+y^3$は$[ ]$であり,$\displaystyle \frac{y}{x^2}+\frac{x}{y^2}$は$[ ]$である.
(2)次の問いに答えよ.

(i) $\sin 1$,$\sin 2$,$\sin 3$,$\sin 4$のなかで,負となるものは$[ ]$である.また,正となるものの最小値は$[ ]$であり,最大値は$[ ]$である.
(ii) $A,\ B (A \neq B)$がいずれも鋭角のとき,次の$3$つの数の最小値は$[ ]$,最大値は$[ ]$である.
\[ \sin \frac{A+B}{2},\quad \sin \frac{A}{2}+\sin \frac{B}{2},\quad \frac{\sin A+\sin B}{2} \]
大阪市立大学 公立 大阪市立大学 2010年 第4問
$a,\ b$は$a < b$をみたす実数とする.$f(x),\ g(x)$は閉区間$[ \; a,\ b \; ]$で定義された連続関数で,$g(x) \leqq f(x)$をみたすとする.座標平面上,不等式$a \leqq x \leqq b,\ g(x) \leqq y \leqq f(x)$をみたす点$(x,\ y)$全体からなる図形をAとする.Aの面積$S$が正のとき,Aの重心の$y$座標は,
\[ \frac{1}{S} \int_a^b \frac{\{f(x)\}^2-\{g(x)\}^2}{2} \, dx \]
で与えられる.この事実を用いて,次の問いに答えよ.

(1)$r$は$0 < r < 1$をみたす実数とする.不等式$r^2 \leqq x^2 + y^2 \leqq 1,\ y \geqq 0$をみたす点$(x,\ y)$全体からなる図形をBとおく.Bの重心の$y$座標$Y(r)$を$r$を用いて表せ.
(2)$t$は正の実数とする.不等式$-1 \leqq x \leqq 1,\ \sqrt{1-x^2} -t \leqq y \leqq \sqrt{1-x^2}$をみたす点$(x,\ y)$全体からなる図形をCとおく.Cの重心の$y$座標$Z(t)$を$t$を用いて表せ.
(3)(1)で得られた$Y(r)$と(2)で得られた$Z(t)$について,$\displaystyle \lim_{r \to 1-0}Y(r)$と$\displaystyle \lim_{t \to +0}Z(t)$の大小を比較せよ.
兵庫県立大学 公立 兵庫県立大学 2010年 第1問
整式$P=4x^4y+4x^2y^3+4x^3y^2+4xy^4$を因数分解しなさい.また,$\displaystyle x=\frac{3+\sqrt{5}}{2},\ y=\frac{3-\sqrt{5}}{2}$のとき,$P$の値を求めなさい.
岡山県立大学 公立 岡山県立大学 2010年 第1問
次の問いに答えよ.

(1)方程式$2^x=3^{1-x}$を解け.
(2)$\cos 2\theta-3\cos \theta+2=0$を満たす$\theta$の値を求めよ.ただし,$0 \leqq \theta < 2\pi$である.
(3)$x^2-xy+y^2=1$のとき,$x+y$のとり得る値の範囲を求めよ.
兵庫県立大学 公立 兵庫県立大学 2010年 第2問
$2$次の正方行列$A=\left( \begin{array}{cc}
\cos \alpha & \displaystyle \frac{4}{3}\cos \beta \\
\displaystyle \frac{3}{4}\sin \alpha & \sin \beta
\end{array} \right)$が表す$1$次変換が座標平面における楕円$\displaystyle C:\frac{x^2}{4^2}+\frac{y^2}{3^2}=1$をそれ自身に移すとする.このとき次の問いに答えよ.

(1)$\alpha$を$\beta$の式で表せ.
(2)$A^3=E$(単位行列)となる行列$A$をすべて求めよ.
高知工科大学 公立 高知工科大学 2010年 第2問
座標平面上に円$C:x^2+y^2-8x+2y+7=0$と点A$(0,\ 1)$がある.円$C$の中心をB,半径を$r$とする.また点Aを通り,傾き$m$の直線を$\ell$とする.次の各問に答えよ.

(1)点Bの座標と$r$を求めよ.
(2)直線$\ell$が円$C$と共有点を持つとき,$m$の取り得る値の範囲を求めよ.
(3)点Bを通り,傾き3の直線と直線$\ell$との交点をPとする.点Pが円$C$の円周または内部に含まれるとき,$m$の取り得る値の範囲を求めよ.
(4)(3)のとき,線分APの両端を除いた部分と円$C$との共有点をQとする.AQの長さの最大値と最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2010年 第5問
$k$を正の実数とし,$xy$平面上の$2$曲線
\[ C_1:y=-x^3+kx,\quad C_2:x^2+y^2=k \]
を考える.

(1)$C_1$と$C_2$の共有点の個数を求めよ.
(2)$C_1$と$C_2$が$4$つの共有点を持つとする.$x \geqq 0,\ y \geqq 0$の範囲において,$C_1$と$C_2$で囲まれた$2$つの部分の面積をそれぞれ求めよ.
会津大学 公立 会津大学 2010年 第1問
$(1)$の問いに答えよ.また,$(2)$から$(6)$までの空欄をうめよ.

(1)次の積分を求めよ.ただし,積分定数は省略してもよい.

(i) $\displaystyle \int_1^e x \log x \, dx=[ ]$
(ii) $\displaystyle \int \sin^3 x \cos x \, dx=[ ]$

(2)$y=\sqrt[5]{2x-1}$のとき,$\displaystyle \frac{dy}{dx}=[ ]$である.
(3)方程式$2^{x^2-1}4^{x+2}=8^{x+3}$の解は$x=[ ]$である.
(4)方程式$\log_3(x-5)=2-\log_3(x+3)$の解は$x=[ ]$である.
(5)2直線$y=3x$と$\displaystyle y=\frac{x}{3}$のなす角を$\theta$とするとき,$\tan \theta=[ ]$である.ただし,$\displaystyle 0<\theta<\frac{\pi}{2}$とする.
(6)座標平面上で次の連立不等式
\[ \left\{
\begin{array}{l}
|x|+|y| \leqq 2 \\
x^2+y^2 \geqq 2
\end{array}
\right. \]
の表す領域の面積は[ ]である.
岐阜薬科大学 公立 岐阜薬科大学 2010年 第6問
楕円$\displaystyle O:\frac{x^2}{3}+y^2=1$,直線$\ell:y=x-\alpha (\alpha>0)$,直線$m_t:y=-x+t$がある.楕円$O$と直線$\ell$が接しているとき,次の問いに答えよ.

(1)$\alpha$の値を求めよ.また,楕円$O$と直線$m_t$が$2$個の共有点をもつように,$t$の値の範囲を定めよ.
(2)直線$\ell$と直線$m_t$の交点を点$\mathrm{H}$とするとき,点$\mathrm{A}(0,\ -2)$と点$\mathrm{H}$との距離$s$を$t$を用いて表せ.また,楕円$O$と直線$m_t$が$2$個の共有点$\mathrm{P}$,$\mathrm{Q}$をもつとき,$(\mathrm{PH})^2-(\mathrm{QH})^2$を$t$を用いて表せ.ただし,$\mathrm{PH}>\mathrm{QH}$とする.
(3)楕円$O$を直線$\ell$のまわりに$1$回転してできる回転体の体積$V$を求めよ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。