タグ「y^2」の検索結果

5ページ目:全631問中41問~50問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
中心の座標が$(1,\ 1)$,半径が$2 \sqrt{2}$である座標平面上の円を$C$とする.$C$上の点$\mathrm{P}(x,\ y)$に対して$t=x+y$とおく.

(1)$\mathrm{P}(x,\ y)$が$C$上を動くとき$t$が取り得る値の範囲は$[$1$][$2$] \leqq t \leqq [$3$][$4$]$である.特に$t=0$のとき,$x^2+y^2=[$5$]$が成り立つ.
(2)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$xy$の値は$t=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$]}{[$9$]}$をとる.
(3)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$x^3+y^3$の値は$t=[$10$]+\sqrt{[$11$][$12$]}$のとき最大になる.
日本医科大学 私立 日本医科大学 2016年 第1問
次の各問いに答えよ.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\mathrm{CD}$,$\mathrm{DA}=2$,また$\angle \mathrm{DAB}={60}^\circ$である.四角形$\mathrm{ABCD}$の対角線の交点を$\mathrm{P}$,$\angle \mathrm{BCD}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$,$\mathrm{BD}$と$\mathrm{CQ}$の交点を$\mathrm{R}$とするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.

(i) 辺$\mathrm{BD}$の長さを求めよ.
(ii) $\angle \mathrm{ABD}$の大きさを求めよ.
(iii) 辺$\mathrm{BP}$の長さを求めよ.
\mon[$\tokeishi$] 三角形$\mathrm{PQR}$の内接円の半径を求めよ.

(2)自然数$n$に対して,$n$を$3$で割った余りを$a_n$,$n^2$を$3$で割った余りを$b_n$とするとき,以下の各問いに答えよ.

(i) $\displaystyle \sum_{n=1}^{2016} (a_n+b_n)$の値を求めよ.
(ii) $\displaystyle \sum_{n=1}^m (a_{n+2}+b_{n+1}+2a_n)=2016$を満たす自然数$m$の値を求めよ.

(3)$\mathrm{O}$を原点とする座標平面上に,次のような双曲線$C$と直線$\ell_k$($k$は実数の定数)が与えられているとき,以下の各問いに答えよ.
\[ C:\frac{x^2}{4}-\frac{y^2}{3}=-1 \qquad \ell_k:3x-4y+k=0 \]

(i) $C$と$\ell_k$が接するような$k$の値を求めよ.
(ii) $C$上の点と直線$\ell_0:3x-4y=0$の距離の最小値を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)円$x^2+y^2-6x+12y+25=0$を$C_1$とし,中心が原点で,円$C_1$に外接する円を$C_2$とする.このとき円$C_2$の半径は$[ケ]$である.また$2$つの円$C_1$,$C_2$の共有点の座標は$[コ]$である.
(2)不等式$3^{2x}+1<3^{x+2}+3^{x-2}$を解くと,$[サ]<x<[シ]$である.
(3)自然数$n$に対して$m \leqq \log_2 n<m+1$を満たす整数$m$を$a_n$で表すことにする.このとき$a_{2016}=[ス]$である.また,自然数$k$に対して$a_n=k$を満たす$n$は全部で$[セ]$個あり,そのような$n$のうちで最大のものは$n=[ソ]$である.さらに$\displaystyle \sum_{n=1}^{2016}a_n=[タ]$である.
(ヒント:$2^{10}=1024$)
慶應義塾大学 私立 慶應義塾大学 2016年 第3問
球面$S:x^2-8x+y^2-4y+z^2+6z+20=0$は点$\mathrm{A}([$24$],\ [$25$],\ [$26$])$で$xy$平面と接し,球面$S$と$zx$平面との交わりは中心$\mathrm{B}([$27$],\ [$28$],\ [$29$][$30$])$,半径$\sqrt{[$31$]}$の円である.

球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
学習院大学 私立 学習院大学 2016年 第2問
平面上の点$\mathrm{P}(s,\ t)$が楕円$\displaystyle C:\frac{x^2}{8}+\frac{y^2}{2}=1$上を動くとき,$\displaystyle \frac{t-2}{s-4}$の最大値を求めよ.また,最大値を与える$s,\ t$を求めよ.
東北学院大学 私立 東北学院大学 2016年 第2問
不等式
\[ x^2+y^2-2x-2y+1 \leqq 0 \]
の表す領域を$A$とし,不等式
\[ \log_{10}(y-1)-2 \log_{10}|x-1| \geqq 0 \]
で表される領域を$B$とする.このとき,以下の問いに答えよ.

(1)$A$を図示せよ.
(2)$B$を図示せよ.
(3)点$(x,\ y)$が$A$と$B$の共通部分$A \cap B$を動くとき,$x+y$の最大値および最小値を求めよ.
東北学院大学 私立 東北学院大学 2016年 第2問
$\displaystyle x=\frac{5-\sqrt{21}}{2},\ y=\frac{5+\sqrt{21}}{2}$のとき,次の式の値を求めよ.

(1)$x^2+y^2$
(2)$\sqrt{x}-\sqrt{y}$
東北学院大学 私立 東北学院大学 2016年 第4問
点$\mathrm{A}(8,\ 6)$を中心とし半径が$r$の円と円$C:x^2+y^2=4$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとき,次の問いに答えよ.ただし,点$\mathrm{P}$の$x$座標は点$\mathrm{Q}$の$x$座標より小さいとする.

(1)$r$の値の範囲を求めよ.
(2)直線$\mathrm{AP}$が円$C$の接線であるとき,$r$の値と点$\mathrm{P}$の座標を求めよ.
愛知工業大学 私立 愛知工業大学 2016年 第2問
$n$を自然数とする.$xy$平面において,$2$つの放物線$y=nx^2$,$x=(n+1)y^2$で囲まれた部分の面積を$S_n$とする.

(1)$S_n$を求めよ.
(2)無限級数$S_1+S_2+\cdots +S_n+\cdots$の和を求めよ.
名城大学 私立 名城大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{\sqrt{5}+1}{2}$のとき,$x^2+y^2=[ア]$,$x^2-y^2=[イ]$である.

(2)関数$y=-2x^2+6x-5 (0 \leqq x \leqq 2)$の最大値は$[ウ]$,最小値は$[エ]$である.
(3)円$C_1:x^2+y^2=1$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$と点$\mathrm{A}(3,\ 0)$の中点$\mathrm{Q}$の座標は$[オ]$である.これより,$\mathrm{P}$が$C_1$上をもれなく動くとき,$\mathrm{Q}$の描く軌跡は円であり,その方程式は$[カ]$である.
(4)放物線$C_2:y=x^2-2x$と直線$\ell:y=x$がある.$C_2$と$x$軸によって囲まれる部分の面積は$[キ]$であり,$C_2$と$\ell$によって囲まれる部分の面積は$[ク]$である.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。