タグ「y^2」の検索結果

11ページ目:全631問中101問~110問を表示)
福岡教育大学 国立 福岡教育大学 2015年 第1問
次の問いに答えよ.

(1)${(x-3y+2z)}^7$の展開式における$x^4y^2z$の項の係数を求めよ.
(2)$a$を定数とし,$0<a<1$とする.不等式
\[ \log_a (a-x-y)>\log_ax+\log_ay \]
が表す領域を図示せよ.
(3)$n$は$3$以上の自然数とする.数学的帰納法によって,次の不等式を証明せよ.
\[ 2^n>\frac{1}{2}n^2+n \]
福岡教育大学 国立 福岡教育大学 2015年 第1問
次の問いに答えよ.

(1)${(x-3y+2z)}^7$の展開式における$x^4y^2z$の項の係数を求めよ.
(2)$a$は正の定数で,$a \neq 1$とする.不等式
\[ \log_a (a-x-y)>\log_ax+\log_ay \]
が表す領域を図示せよ.
(3)$n$は$3$以上の自然数とする.数学的帰納法によって,次の不等式を証明せよ.
\[ 2^n>\frac{1}{2}n^2+n \]
弘前大学 国立 弘前大学 2015年 第4問
$xy$平面において,曲線$C:x^2+y^2=1 (x \geqq 0,\ y \geqq 0)$,および直線$\ell:y=(\tan \theta)x$を考える.ただし,$\theta$は$\displaystyle 0<\theta<\frac{\pi}{2}$をみたす定数とする.$S_1,\ S_2,\ S_3$を次によって定める.

$S_1:$ $y$軸,曲線$C$,直線$\ell$で囲まれた部分の面積
$S_2:$ $x$軸,曲線$C$,直線$x=\cos \theta$で囲まれた部分の面積
$S_3:$ $x$軸,直線$\ell$,直線$x=\cos \theta$で囲まれた部分の面積

次の問いに答えよ.

(1)$S_1$および$S_2$を$\theta$を用いて表せ.
(2)$S_1=S_2$となる$\theta$が存在することを示せ.
(3)$S_1=S_2=S_3$となる$\theta$は存在しないことを示せ.
愛媛大学 国立 愛媛大学 2015年 第4問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
富山大学 国立 富山大学 2015年 第1問
$m$を実数とする.方程式
\[ mx^2-my^2+(1-m^2)xy+5(1+m^2)y-25m=0 \cdots\cdots (*) \]
を考える.このとき,次の問いに答えよ.

(1)$xy$平面において,方程式$(*)$が表す図形は$2$直線であることを示せ.
(2)$(1)$で求めた$2$直線は$m$の値にかかわらず,それぞれ定点を通る.これらの定点を求めよ.
(3)$m$が$-1 \leqq m \leqq 3$の範囲を動くとき,$(1)$で求めた$2$直線の交点の軌跡を図示せよ.
群馬大学 国立 群馬大学 2015年 第4問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
群馬大学 国立 群馬大学 2015年 第3問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
愛媛大学 国立 愛媛大学 2015年 第3問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
高知大学 国立 高知大学 2015年 第1問
方程式$x^2+y^2+2kx-4ky+10k-20=0$の表す図形$C$を考える.ただし,$k$は実数とする.次の問いに答えよ.

(1)図形$C$は円であることを示せ.
(2)図形$C$は$k$がどのような値であっても定点を通る.その定点の座標を求めよ.
(3)図形$C$で囲まれる部分の面積の最小値を求めよ.
(4)図形$C$と直線$y=x-2$の共有点の個数を求めよ.
高知大学 国立 高知大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle |x+1|<\frac{1}{2},\ |y-2|<\frac{1}{3}$のとき
\[ |-8x^3+12xy+3y^2+4|<10 \]
を示せ.
次の$3$題$(2)$~$(4)$から$1$題選択して解答せよ.
(2)$12$個のサイコロを同時に投げたとき,$1$の目がちょうど$n$個出る確率を$P_n$とする.$P_n$は$n=2$のとき最大になることを示せ.
(3)$a$を正の整数とし,$p,\ q$を素数とする.このとき,$2$次方程式
\[ ax^2-px+q=0 \]
の$2$解が整数となるような組$(a,\ p,\ q)$をすべて求めよ.
(4)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$上に,異なる$2$点$\mathrm{X}$,$\mathrm{Y}$を,$\mathrm{BXYC}$の順に並ぶように選ぶ.$\mathrm{X}$を通り$\mathrm{AB}$に平行な直線と,$\mathrm{Y}$を通り$\mathrm{AC}$に平行な直線との交点を$\mathrm{P}$とし,直線$\mathrm{AP}$と辺$\mathrm{BC}$との交点を$\mathrm{Z}$とする.このとき
\[ \frac{\mathrm{CY}}{\mathrm{BX}}=\frac{\mathrm{YZ}}{\mathrm{XZ}} \]
となることを示せ.
スポンサーリンク

「y^2」とは・・・

 まだこのタグの説明は執筆されていません。