タグ「x^5」の検索結果

3ページ目:全32問中21問~30問を表示)
徳島大学 国立 徳島大学 2012年 第3問
次の問いに答えよ.

(1)実数$x,\ y$が$x+y=5,\ x^3+y^3=50$を満たすとき,$xy,\ x^2+y^2,\ x^5+y^5$の値を求めよ.
(2)$x>1$とする.不等式$\displaystyle \log_2 \frac{x}{4^3}+\log_x 4^4<0$を解け.
愛知教育大学 国立 愛知教育大学 2012年 第5問
$a$を実数の定数とし,$5$次多項式$\displaystyle f(x)=x^5-\frac{5}{3}(a^2+1)x^3+5a^2x$を考える.ただし,$a>1$とする.

(1)$5$次方程式$f(x)=0$が$5$つの異なる実数解をもつための$a$の条件を求めよ.
(2)$f(1)+f(a)$が${(a+1)}^3$で割り切れるかどうかを調べよ.
(3)$a$が$(1)$の条件を満たすとき,$|f(1)|>|f(a)|$となるための$a$の範囲を求めよ.
(4)$a$が$(1)$と$(3)$の条件を満たすとき,$5$次方程式$f(x)-c=0$が$5$つの異なる実数解をもつための実数$c$の範囲を求めよ.
立教大学 私立 立教大学 2012年 第1問
次の空欄ア~ケに当てはまる数または式を記入せよ.

(1)$(x-2y)^8$の展開式における$x^5y^3$の係数は[ア]である.
(2)$\displaystyle \int_0^2 (x^2-ax+2)\, dx=0$の等式を満たす定数$a$の値は[イ]である.
(3)$1$から$200$までの整数で,$3$および$7$のいずれでも割りきれない数の個数は[ウ]個である.
(4)方程式$5x+3y+z=15$を満たす自然数$x,\ y,\ z$の組の個数は[エ]個である.
(5)原点$\mathrm{O}$から出発して数直線上を動く点$\mathrm{P}$がある.点$\mathrm{P}$は,サイコロを振って偶数の目が出るとその目の数に$+3$をかけた数だけ移動し,奇数の目が出るとその目の数に$-2$をかけた数だけ移動する.このサイコロを$1$回振るときの点$\mathrm{P}$の数直線上の位置の期待値は[オ]である.
(6)$a=\log_2 5,\ b=\log_2 9$とおく.$\log_4 150$を$a,\ b$を用いて表すと[カ]である.
(7)複素数$z$が$\displaystyle z=\frac{a}{1-3i}+\frac{bi}{1+3i}$で与えられたとき,$z=4i$となるような実数$a,\ b$を求めると,$a=[キ],\ b=[ク]$である.ただし,$i$は虚数単位とする.
(8)$\mathrm{O}$を原点とする座標平面上に長さが等しいベクトル$\overrightarrow{\mathrm{OP}}=(2,\ 6)$と$\overrightarrow{\mathrm{OQ}}$がある.$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{OQ}}$のなす角が$\displaystyle \frac{\pi}{3}$であるとき,点$\mathrm{Q}$の$x$座標は[ケ]である.ただし,点$\mathrm{Q}$の$x$座標は$2$より小さいとする.
関西学院大学 私立 関西学院大学 2012年 第1問
次の文章中の$[ ]$に適する式または数値を記入せよ.

(1)$xy$平面における放物線
\[ y=x^2-4x+1 \]
は放物線$y=x^2$を$x$軸方向に$[ア]$,$y$軸方向に$[イ]$だけ平行移動することによって得られる.関数
\[ y=x^2-4x+1 \quad (a \leqq x \leqq a+1) \]
の最小値を$m$とおく.ただし,$a$は実数である.$a<1$の場合は$m=[ウ]$であり,$1 \leqq a \leqq 2$の場合は$m=[エ]$であり,$a>2$の場合は$m=[オ]$である.
(2)${(2x^2-xy-3y^2)}^5$の展開式における$x^5y^5$の係数を求めよう.二項定理により
\[ \begin{array}{lll}
{(2x^2-xy-3y^2)}^5 &=& \displaystyle\left\{ (2x^2-xy)-3y^2 \right\}^5 \\
&=& (2x^2-xy)^5+5(2x^2-xy)^4(-3y^2) \\
& & +[カ](2x^2-xy)^3(-3y^2)^2+10(2x^2-xy)^2(-3y^2)^3 \\
& & +5(2x^2-xy)(-3y^2)^4 +(-3y^2)^5
\end{array} \]
が成り立つ.$(2x^2-xy)^5$の展開式における$x^5y^5$の係数は$[キ]$であり,$5(2x^2-xy)^4(-3y^2)$の展開式における$x^5y^5$の係数は$[ク]$である.さらに,$[カ](2x^2-xy)^3(-3y^2)^2$の展開式における$x^5y^5$の係数は$[ケ]$である.また,$10(2x^2-xy)^2(-3y^2)^3+5(2x^2-xy)(-3y^2)^4+(-3y^2)^5$の展開式における$x^5y^5$の係数は$0$である.よって${(2x^2-xy-3y^2)}^5$の展開式における$x^5y^5$の係数は$[コ]$である.
福岡女子大学 公立 福岡女子大学 2012年 第1問
$a$を定数とし,$f(x)=x^5-5x^3+ax$とする.方程式$f(x)=0$は異なる$5$つの実数解をもち,これらを$x_1<x_2<x_3<x_4<x_5$とする.この$5$つの解は等差数列をなしており,その総和は$0$である.次の問に答えなさい.

(1)$x_3=0$を示せ.
(2)$a$の値を求めよ.
(3)$x_1,\ x_2,\ x_4,\ x_5$を求めよ.
福岡女子大学 公立 福岡女子大学 2012年 第1問
$a$を定数とし,$f(x)=x^5-5x^3+ax$とする.方程式$f(x)=0$は異なる$5$つの実数解をもち,これらを$x_1<x_2<x_3<x_4<x_5$とする.この$5$つの解は等差数列をなしており,その総和は$0$である.次の問に答えなさい.

(1)$x_3=0$を示せ.
(2)$a$の値を求めよ.
(3)$x_1,\ x_2,\ x_4,\ x_5$を求めよ.
熊本大学 国立 熊本大学 2011年 第1問
$x,\ y$を整数とするとき,以下の問いに答えよ.

(1)$x^5-x$は$30$の倍数であることを示せ.
(2)$x^5y-xy^5$は$30$の倍数であることを示せ.
宮崎大学 国立 宮崎大学 2011年 第5問
$P(x)$は,$x^5$の係数が1であるような5次式とする.$P(x)$を$x^2-x-6$で割ったときの商を$Q(x)$,$Q(x)$を$x-2$で割ったときの商を$R(x)$とおく.
\[ P(-2)=-10, P(3)=5,\quad Q(2)=Q(-2)=R(-3)=2 \]
であるとき,次の各問に答えよ.

(1)$P(x)$を$x^2-x-6$で割ったときの余りを求めよ.
(2)$R(x)$を求めよ.
(3)$P(x)$を求め,展開して降べきの順に整理せよ.
滋賀医科大学 国立 滋賀医科大学 2011年 第3問
文字$x,\ y,\ z$の任意の整式$A$に対して,$x,\ y,\ z$をそれぞれ$\sin \theta,\ \cos \theta,\ \tan \theta$に置き換えて得られる$\theta$の関数を$\widetilde{A}(\theta)$で表す.例えば,
\[ \begin{array}{lll}
P=x^5+z^4-xyz & \text{ならば} & \widetilde{P}(\theta)=\sin^5 \theta+\tan^4 \theta-\sin \theta \cos \theta \tan \theta, \\
P=x^2+y^2,\ Q=1 & \text{ならば} & \widetilde{P}(\theta)=\sin^2 \theta+\cos^2 \theta=1=\widetilde{Q}(\theta)
\end{array} \]
である.ただし$\theta$の関数の定義域は$\displaystyle 0 \leqq \theta \leqq 2\pi,\ \theta \neq \frac{\pi}{2},\ \frac{3\pi}{2}$とする.

(1)$P$を$x,\ y,\ z$の整式とする.$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$y,\ z$の整式$Q$が存在することを示せ.
(2)$P$を$x,\ y,\ z$の整式とする.$\widetilde{P}(0)=\widetilde{P}(\pi)$ならば,$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$x,\ z$の整式$Q$が存在することを示せ.
(3)$P$を$x,\ y,\ z$の整式とする.$\displaystyle \theta \to \frac{\pi}{2}$のとき,および$\displaystyle \theta \to \frac{3\pi}{2}$のとき,$\widetilde{P}(\theta)$がそれぞれ収束するならば,$\widetilde{P}(\theta)=\widetilde{Q}(\theta)$となる$x,\ y$の整式$Q$が存在することを示せ.収束とは,一定の実数に限りなく近づくことである.
北海道医療大学 私立 北海道医療大学 2011年 第3問
二項定理と二項係数を用いて,以下の問に答えよ.ただし,$m$と$n$は正の整数である.

(1)${(x+1)}^m$の展開式における$x^r$の係数を求めよ.ただし,$r$は整数で,$0 \leqq r \leqq m$とする.
(2)${(x^2+1)}^n$の展開式における$x^{2s}$の係数を求めよ.ただし,$s$は整数で,$0 \leqq s \leqq n$とする.
(3)$m$を$2$より大きな正の整数,$n$を正の整数とするとき,${(x+1)}^m{(x^2+1)}^n$の展開式における$x^3$の係数を$m$と$n$を用いて表せ.
(4)$m$を$2$より大きな正の整数,$n$を正の整数とするとき,${(x+1)}^m{(x^2+1)}^n$の展開式における$x^3$の係数が$30$であるという.

(i) 正の整数$m$および$n$の値を求めよ.
(ii) ${(x+1)}^m{(x^2+1)}^n$の展開式における$x^5$の係数の値を求めよ.
スポンサーリンク

「x^5」とは・・・

 まだこのタグの説明は執筆されていません。