タグ「x^3」の検索結果

32ページ目:全824問中311問~320問を表示)
北海学園大学 私立 北海学園大学 2014年 第2問
関数$f(x)=ax^3+bx^2+cx-8$と$g(x)=x^2-4x+8$がある.$f(x)$は$x=2$で極大値$0$をとり,$x=p$で極小値$f(p)$をとる.また,曲線$y=f(x)$が点$(1,\ -4)$を通るとき,次の問いに答えよ.ただし,$a,\ b,\ c$は定数とする.

(1)$a,\ b,\ c$の値を求めよ.また,極小値$f(p)$を求めよ.
(2)曲線$y=g(x)$に点$(p,\ f(p))$から引いた$2$本の接線の方程式を求めよ.
(3)曲線$y=g(x)$と$(2)$で求めた$2$本の接線で囲まれた部分の面積を求めよ.
広島工業大学 私立 広島工業大学 2014年 第2問
曲線$C:y=-5x^3+21x$と直線$\ell:y=x$の交点のうち$x$座標が正である点を$\mathrm{A}$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$の座標を求めよ.
(2)$C$上の点$\mathrm{P}$の$x$座標を$t$とするとき,$\triangle \mathrm{OAP}$の面積$S$を$t$の式で表せ.ただし,$0<t<2$とする.
(3)$0<t<2$とするとき,$(2)$で求めた$S$の最大値とそのときの$t$の値を求めよ.
成城大学 私立 成城大学 2014年 第1問
$3$次方程式$x^3+ax^2+bx+c=0$の$1$つの解が$1+5i$であるとき,以下の問いに答えよ.ただし,$a,\ b,\ c$は実数の定数,$i$は虚数単位とする.

(1)$b,\ c$を$a$を用いて表せ.
(2)$a=2$のとき,この方程式の他の$2$つの解を求めよ.
成城大学 私立 成城大学 2014年 第3問
$x$の関数$\displaystyle f(x)=-\frac{1}{3}x^3+\frac{1}{2}ax^2-a$の$0 \leqq x \leqq 2$における最大値を$g(a)$とおく.ただし,$a$は実数とする.

(1)$g(a)$を求めよ.
(2)$g(a)$の最小値と,その時の$a$を求めよ.
東京薬科大学 私立 東京薬科大学 2014年 第1問
次の問いに答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$(\sqrt{2}+\sqrt{3}+\sqrt{7})(\sqrt{2}+\sqrt{3}-\sqrt{7})(\sqrt{2}-\sqrt{3}+\sqrt{7})(-\sqrt{2}+\sqrt{3}+\sqrt{7})=[アイ]$
(2)関数$f(x)=x^3+ax^2+bx+5$が,$x=-2$で極大値を,$x=1$で極小値をとるなら,
\[ a=\frac{[$*$ ウ]}{[エ]},\quad b=[$*$ オ] \]
である.
(3)座標平面上に原点$\mathrm{O}$と$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$があり,点$\mathrm{P}$は$t$を実数として,
\[ \overrightarrow{\mathrm{OP}}=t \overrightarrow{\mathrm{OA}}+(1-t) \overrightarrow{\mathrm{OB}} \]
を満たす.$|\overrightarrow{\mathrm{OP}}|$が最小になるのは$\displaystyle t=\frac{[カキ]}{[クケ]}$のときである.
このとき$\overrightarrow{\mathrm{OP}}$と$\overrightarrow{\mathrm{AB}}$のなす角は${[コサ]}^\circ$である.
(4)$1$階,$2$階,$4$階,$5$階にだけ停止する荷物用のエレベーターで,$1$階にある$10 \, \mathrm{kg}$,$20 \, \mathrm{kg}$,$30 \, \mathrm{kg}$の$3$個の荷物の全てを上階に運ぶ.一つの階に運ばれる荷物が複数個や$0$個になることを認めると,荷物の運び方は$[シス]$通りである.$10 \, \mathrm{kg}$を$1$階分上げるごとに$1$単位の電力が必要であると仮定すると,$3$個の荷物を上げるために必要な電力の期待値は$[セソ]$単位である.
昭和薬科大学 私立 昭和薬科大学 2014年 第1問
次の問いに答えよ.

(1)${2}^{314}$は$[ア][イ]$桁の整数で,最高位の数は$[ウ]$である.ただし,最高位の数とは,例えば$5279$の場合は$5$を指す.また,$\log_{10}2$を$0.3010$,$\log_{10}3$を$0.4771$とする.
(2)図のような格子状の道路網がある.点$\mathrm{A}$から点$\mathrm{B}$まで最短経路で行く方法は$[エ][オ][カ]$通りある.また,点$\mathrm{A}$から線分$\mathrm{PQ}$を通らないで点$\mathrm{B}$まで最短経路で行く方法は$[キ][ク]$通りある.
(図は省略)
(3)$\mathrm{AB}=5$,$\mathrm{AC}=6$,$\mathrm{BC}=7$である$\triangle \mathrm{ABC}$の内接円の半径は$\displaystyle \frac{[ケ] \sqrt{[コ]}}{[サ]}$である.
(4)公比が負の数である等比数列がある.初項から第$4$項までの和は$\displaystyle \frac{75}{16}$,第$3$項と第$4$項の和は$\displaystyle \frac{27}{16}$である.この等比数列の初項は$[シ][ス]$で,公比は$\displaystyle \frac{[セ][ソ]}{[タ]}$である.
(5)条件$1 \leqq a \leqq 5$,$0 \leqq b<a$,$|c| \leqq b$を満たす整数の組$(a,\ b,\ c)$は全部で$[チ][ツ]$通りある.
(6)連立不等式
\[ |2x^2-8x+6| \leqq \frac{9}{8},\qquad x^3-6x^2+12x-8 \geqq 0 \]
の解は$\displaystyle \frac{[テ]+\sqrt{[ト]}}{[ナ]} \leqq x \leqq \frac{[ニ][ヌ]}{[ネ]}$である.
名城大学 私立 名城大学 2014年 第3問
$3$次関数$f(x)=-x^3+ax^2$に対し,曲線$y=f(x)$と直線$y=2x-2$が接しているとする.

(1)$a$の値を求めよ.
(2)$f(x)$の増減表をかき極値を求め,$y=f(x)$のグラフをかけ.
(3)曲線$y=f(x)$の$x \geqq 0$の部分と,$x$軸および直線$x=1$によって囲まれる図形の面積を求めよ.
名城大学 私立 名城大学 2014年 第4問
$a$を定数として,$x$の$3$次関数
\[ f(x)=x^3+6(1-a)x^2-48ax \]
について,次の問に答えよ.

(1)$f(x)$が極値をもたないとき,$a$の値を求めよ.
(2)$f(x)$が正の極大値と負の極小値をもつとき,$a$の値の範囲を求めよ.
(3)$f(x)$が負の極大値をもつとき,$a$の値の範囲を求めよ.
上智大学 私立 上智大学 2014年 第1問
次の問いに答えよ.

(1)関数$f(x)$を
\[ f(x)=\int_0^1 |(x-1)(x-t)| \, dt \]
とする.
$x \leqq [ア]$,$x \geqq [イ]$のとき,
\[ f(x)=[ウ]x^2+\frac{[エ]}{[オ]}x+\frac{[カ]}{[キ]} \]
$[ア]<x<[イ]$のとき,
\[ f(x)=[ク]x^3+[ケ]x^2+\frac{[コ]}{[サ]}x+\frac{[シ]}{[ス]} \]
である.また,関数$f(x)$は$x=[セ]$のとき,最小値$[ソ]$をとる.
(2)自然数$m,\ n$が
\[ \frac{1}{m}+\frac{1}{n}<\frac{1}{3} \]
を満たすとき,$\displaystyle \frac{1}{m}+\frac{1}{n}$の最大値は$\displaystyle \frac{[タ]}{[チ]}$である.
東京理科大学 私立 東京理科大学 2014年 第2問
次の$[ ]$内にあてはまる$0$から$9$までの数字を求めよ.

$f(x)$はすべての係数が整数であるような$3$次多項式で,$x^3$の係数が$1$であり,
\[ \frac{-\sqrt[3]{2}-2+\sqrt[3]{2} \sqrt{3}i}{2} \]
は方程式$f(x)=0$の解の$1$つであるとする.ただし,$i$は虚数単位とする.このとき,
\[ f(x)=x^3+[チ]x^2+[ツ]x-[テ] \]
であり,$f(x)=0$の実数解は${[ト]}^{\frac{1}{3}}-[ナ]$である.
スポンサーリンク

「x^3」とは・・・

 まだこのタグの説明は執筆されていません。