タグ「領域」の検索結果

21ページ目:全399問中201問~210問を表示)
西南学院大学 私立 西南学院大学 2013年 第5問
直線$y=x$と放物線$C:y=x^2-x$で囲まれる領域の面積を$S$とする.以下の問に答えよ.

(1)直線$y=ax$(ただし$a>-1$)と$C$で囲まれる領域の面積が$\displaystyle \frac{S}{2}$となるとき,$a$の値を求めよ.
(2)直線$y=ax$(ただし$a>-1$)と$C$で囲まれる領域の面積を$\displaystyle \frac{S}{k}$とする.$a$が負となるような最小の自然数$k$を求めよ.
(3)原点を通る$9$本の直線が$S$を$10$等分するとき,それらの直線の傾きを大きい方から$a_1,\ a_2,\ \cdots,\ a_{9}$とする.このとき,$a_7$を求めよ.
西南学院大学 私立 西南学院大学 2013年 第5問
以下の問に答えよ.

(1)$y=x^2-4x+2$で表されるグラフを$G$とする.$G$と直線$y=x-2$の共有点の座標を求めよ.また,$G$と直線$y=-x+2$の共有点の座標を求めよ.
(2)次の連立不等式の表す領域を図示せよ.
\[ \left\{ \begin{array}{l}
y \leqq 2 \\
y \geqq x^2-4x+2 \\
(x+y-2)(x-y-2) \geqq 0
\end{array} \right. \]
(3)$(2)$の表す領域の面積を求めよ.
学習院大学 私立 学習院大学 2013年 第4問
次の問いに答えよ.

(1)$x>0$のとき,$1+2 \sin x<x+e^x$が成り立つことを示せ.
(2)$x \geqq 0$の範囲にあって,$2$つの曲線$y=1+2 \sin x,\ y=x+e^x$と直線$x=\pi$とで囲まれる領域を$x$軸のまわりに$1$回転して得られる立体の体積を求めよ.
京都産業大学 私立 京都産業大学 2013年 第2問
以下の$[ ]$にあてはまる式または数値を入れよ.

$xy$平面を考える.大小$2$個のさいころを投げて,大のさいころの目の数を$x$座標,小のさいころの目の数を$y$座標とする点を$\mathrm{P}$とする.もう一度,大小$2$個のさいころを投げて,大のさいころの目の数を$x$座標,小のさいころの目の数を$y$座標とする点を$\mathrm{Q}$とする.
(1)点$\mathrm{P}$が直線$\ell:y=x$上にある確率は$[ア]$である.
(2)点$\mathrm{P}$が不等式$y>x$で表される領域にある確率は$[イ]$である.
(3)点$\mathrm{P}$と点$\mathrm{Q}$が異なる確率は$[ウ]$である.
(4)$2$点$\mathrm{P}$,$\mathrm{Q}$がどちらも直線$\ell:y=x$上になく,かつ線分$\mathrm{PQ}$が$\ell$と共有点をもつ確率は$[エ]$である.
(5)線分$\mathrm{PQ}$の長さが$1$である確率は$[オ]$である.
学習院大学 私立 学習院大学 2013年 第4問
$3$つの実数$x,\ y,\ 12-x^2$を$3$辺の長さとする三角形が描けるような点$\mathrm{P}(x,\ y)$が存在する領域を平面上に図示せよ.また,その領域の面積を求めよ.
津田塾大学 私立 津田塾大学 2013年 第3問
関数$y=|(x+1)(x-2)|$のグラフと直線$y=ax+b$が$4$個の異なる共有点をもつとする.このとき,点$\mathrm{P}(a,\ b)$の存在する領域を図示し,その面積を求めよ.
北里大学 私立 北里大学 2013年 第1問
次の$[ ]$にあてはまる答を記せ.ただし,$(5)$において,必要ならば$\log_{10}2=0.3010$を用いてよい.

(1)$\mathrm{OA}:\mathrm{OB}=1:3$である三角形$\mathrm{OAB}$において,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{N}$とし,$\angle \mathrm{AOB}$の大きさを$\theta$とする.

(i) $\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,$\overrightarrow{a}$と$\overrightarrow{b}$を用いて$\overrightarrow{\mathrm{NA}}$を表すと,$\overrightarrow{\mathrm{NA}}=[ ] \overrightarrow{a}-[ ] \overrightarrow{b}$である.
(ii) $\overrightarrow{\mathrm{ON}}$と$\overrightarrow{\mathrm{NA}}$が垂直であるとき,$\cos \theta$の値は$[ ]$である.

(2)$(x+2y+3z)^6$の展開式における$x^4y^2$の係数は$[ ]$であり,$x^3y^2z$の係数は$[ ]$である.
(3)点$(x,\ y)$が不等式$x^2+y^2 \leqq 4$の表す領域を動くとする.このとき,$3x+y$は,$x=[ ]$,$y=[ ]$において最大値$[ ]$をとり,$x=[ ]$,$y=[ ]$において最小値$[ ]$をとる.
(4)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$つの袋があり,$\mathrm{A}$には赤球$2$個と白球$2$個,$\mathrm{B}$には白球$1$個と青球$3$個,さらに,$\mathrm{C}$には赤球$2$個と白球$1$個と青球$1$個が入っている.いま,$\mathrm{A}$から$1$個の球を取り出し,$\mathrm{B}$から$1$個の球を取り出し,$\mathrm{C}$から$1$個の球を取り出す.

(i) 取り出した$3$個の球の色が$1$種類となる確率は$[ ]$である.
(ii) 取り出した$3$個の球の色が$2$種類となる確率は$[ ]$である.
(iii) 取り出した$3$個の球の色が$3$種類となる確率は$[ ]$である.

(5)条件$a_1=5$,$a_{n+1}=2a_n-3$によって定まる数列$\{a_n\}$の一般項は$a_n=[ ]$で与えられる.この数列の初項から第$n$項までの和を$S_n$とおくとき,$S_8$の値は$[ ]$であり,不等式$\displaystyle \frac{S_n}{3}>n+16666$を満たす正の整数$n$のうちで最小のものは$[ ]$である.
東京電機大学 私立 東京電機大学 2013年 第4問
次の各問に答えよ.

(1)関数$y=2 \cos^2 x-\sin x-1 (0 \leqq x \leqq 2\pi)$の最大値と最小値を求めよ.
(2)袋の中に赤玉$3$個,白玉$4$個,青玉$5$個が入っている.この袋から$2$個の玉を同時に取り出すとき,異なる色の玉を取り出す確率を求めよ.
(3)数列$\{a_n\}$が,$a_1=1$,$a_{n+1}=a_n+3 (n=1,\ 2,\ 3,\ \cdots)$で定められるとき,$\displaystyle \sum_{k=1}^n \frac{1}{a_ka_{k+1}}$を求めよ.
(4)$2$つの放物線$y=-x^2+8x$と$y=-3x^2+18x$で囲まれた図形の面積を求めよ.
(5)点$(x,\ y)$が領域$3x+y \geqq 5$を動くとき,$x^2+y$の最小値を求めよ.
北里大学 私立 北里大学 2013年 第3問
次の文中の$[ア]$~$[ホ]$にあてはまる最も適切な数を答えなさい.

点$\mathrm{A}$の座標を$(4,\ 0)$,点$\mathrm{B}$の座標を$(0,\ 3)$とし,点$\mathrm{A}$,点$\mathrm{B}$を通る直線$L$と点$\mathrm{A}$で接する半径$r$の円を考える.このような円は,直線$L$より上の領域と下の領域にそれぞれ存在する.直線$L$より上の領域に存在する円を$C_1$,下の領域に存在する円を$C_2$とする.また,点$\mathrm{B}$を通る円$C_1$へのもう$1$本の接線が円と接する点を$\mathrm{P}_1$,同じく,点$\mathrm{B}$を通る円$C_2$へのもう$1$本の接線が円と接する点を$\mathrm{P}_2$とする.
(図は省略)
(1)円の半径$r$が線分$\mathrm{AB}$の長さ$R$と等しいとする.
円$C_1$の中心の座標は$([ア],\ [イ])$,円$C_2$の中心の座標は$([ウ],\ [エ])$である.
また,点$\mathrm{P}_1$の座標は$([オ],\ [カ])$,点$\mathrm{P}_2$の座標は$([キ],\ [ク])$である.
(2)円の半径$r$が線分$\mathrm{AB}$の長さ$R$の$2$倍であるとする.
円$C_1$の中心の座標は$([ケ][コ],\ [サ])$,円$C_2$の中心の座標は$([シ],\ [ス])$である.
点$\mathrm{B}$と円$C_1$の中心を通る直線は,線分$\mathrm{AP}_1$を垂直二等分する.その交点を$\mathrm{Q}_1$とする.同様に,点$\mathrm{B}$と円$C_2$の中心を通る直線は,線分$\mathrm{AP}_2$を垂直二等分する.その交点を$\mathrm{Q}_2$とする.
点$\mathrm{B}$と円$C_1$の中心を通る直線の式は$\displaystyle y=\frac{[セ]}{[ソ]}x+[タ]$であり,点$\mathrm{A}$と点$\mathrm{P}_1$を通る直線の式は,$\displaystyle y=-\frac{[ソ]}{[セ]}x+[チ]$と表すことができる.
同様に,点$\mathrm{B}$と円$C_2$の中心を通る直線の式は$\displaystyle y=\frac{[ツ][テ]}{[ト]}x+[タ]$であり,点$\mathrm{A}$と点$\mathrm{P}_2$を通る直線の式は,$\displaystyle y=-\frac{[ト]}{[ツ][テ]}x+\frac{[ナ]}{[ニ][ヌ]}$と表すことができる.
点$\mathrm{Q}_2$の座標は$\displaystyle \left( \frac{[ネ]}{[ノ]},\ \frac{[ハ]}{[ノ]} \right)$,点$\mathrm{P}_2$の座標は$\displaystyle \left( \frac{[ヒ][フ]}{[ヘ]},\ \frac{[ホ]}{[ヘ]} \right)$となる.
吉備国際大学 私立 吉備国際大学 2013年 第2問
水平面に高さ$10 \, \mathrm{m}$の線分$\mathrm{AB}$が垂直に立っている(点$\mathrm{A}$が水平面上).

(1)水平面上の点$\mathrm{P}$から$\mathrm{B}$を見上げる角度が${30}^\circ$のとき,$\mathrm{AP}$を求めよ.
(2)水平面上の点$\mathrm{Q}$から$\mathrm{B}$を見上げる角度が${30}^\circ$以上${60}^\circ$以下であるとき,$\mathrm{Q}$の存在する領域の面積を求めよ.
(3)水平面上$1 \, \mathrm{m}$の高さの点$\mathrm{R}$から$\mathrm{B}$を見上げる角度が${30}^\circ$以上${60}^\circ$以下であるとき,$\mathrm{R}$の存在する領域の面積を求めよ.
スポンサーリンク

「領域」とは・・・

 まだこのタグの説明は執筆されていません。