タグ「面積」の検索結果

91ページ目:全2409問中901問~910問を表示)
福島大学 国立 福島大学 2014年 第4問
次の問いに答えなさい.

(1)半径$1$の円に内接する正$12$角形の面積と一辺の長さを求めなさい.
(2)半径$1$の円に外接する正$12$角形の面積と一辺の長さを求めなさい.
福島大学 国立 福島大学 2014年 第5問
$a,\ b$を正の定数とし,関数$y=f(x)$,$y=g(x)$を次のように定める.


$f(x)=2 \sqrt{x-a} \quad (x \geqq a)$

$\displaystyle g(x)=\frac{x^2}{4}+b \quad (x \geqq 0)$


$y=f(x)$のグラフを$C_1$,$y=g(x)$のグラフを$C_2$とし,$C_1$と$C_2$は$1$点$\mathrm{P}$において接している.すなわち,点$\mathrm{P}$は$C_1$,$C_2$上にあり,点$\mathrm{P}$におけるそれぞれの接線は一致する.

(1)関数$y=f(x)$の導関数を求めなさい.
(2)点$\mathrm{P}$の$x$座標を$t$とするとき,$a$および$b$を$t$を用いて表しなさい.
(3)$t$の値の範囲を求めなさい.
(4)$C_1$,$C_2$,$x$軸,$y$軸で囲まれた図形の面積$S$を$t$を用いて表しなさい.
(5)$S$の最大値と,そのときの$t$の値を求めなさい.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の問いに答えよ.

(1)実数$x$の関数$f(x)=x^3-ax^2+bx+4b-2$は,$\displaystyle \lim_{x \to 4} \frac{f(x)}{x-2}=-5$を満たす.ただし,$a,\ b$は実数とする.このとき,

(i) $b$を$a$の式で表すと,$b=[$1$]a-[$2$]$である.
(ii) $x$の値が$3$から$6$まで変化するときの関数$f(x)$の平均変化率が,関数$f(x)$の$x=2+\sqrt{7}$における微分係数に等しいとき,$a=[$3$]$,$b=[$4$]$である.

(2)実数$a$についての方程式
\[ A=|2a+\displaystyle\frac{4|{3}k}+|a-\displaystyle\frac{8|{9}k} \]
において,$\displaystyle a=\frac{1}{4}$のとき$\displaystyle A=\frac{21}{4}$である.ただし,$k$は正の実数の定数とする.このとき,

(i) $\displaystyle k=\frac{[$5$]}{[$6$]}$である.
(ii) $A$の最小値は$\displaystyle \frac{[$7$]}{[$8$]}$であり,このときの$a$の値は$\displaystyle \frac{[$9$][$10$]}{[$11$]}$である.

(3)$n$を自然数とする.数列$\{a_n\}$は,$a_1=5$,$\displaystyle a_{n+1}=\frac{25}{{a_n}^2}$を満たす.このとき,

(i) $a_3=[$12$][$13$]$,$\displaystyle a_4=\frac{[$14$]}{[$15$][$16$]}$である.
(ii) $b_n=\log_5 a_n$とおくとき,数列$\{b_n\}$の一般項を$n$の式で表すと,
\[ b_n=\frac{\left( [$17$][$18$] \right)^{n-1}}{[$19$]}+\frac{[$20$]}{[$21$]} \]
である.

(4)円に内接する四角形$\mathrm{ABCD}$において,$\angle \mathrm{BCD}=60^\circ$,$\mathrm{CD}=2 \sqrt{6}$,$\angle \mathrm{DAB}>\angle \mathrm{CDA}$である.また$2$直線$\mathrm{BA}$,$\mathrm{CD}$の交点を$\mathrm{E}$,$2$直線$\mathrm{DA}$,$\mathrm{CB}$の交点を$\mathrm{F}$とすると,$\angle \mathrm{AFB}=45^\circ$,$\mathrm{DE}=3 \sqrt{2}-\sqrt{6}$である.このとき,

(i) $\angle \mathrm{AED}$の大きさは${[$22$][$23$]}^\circ$であり,辺$\mathrm{EB}$の長さは$[$24$]$である.

(ii) 三角形$\mathrm{AED}$の面積は,三角形$\mathrm{CEB}$の面積の$\displaystyle \frac{[$25$]-\sqrt{[$26$]}}{[$27$]}$倍である.

(5)$xy$平面上に放物線$C:2x^2+(k-5)x-(k+1)y+6k-14=0$と直線$\displaystyle \ell:y=\frac{1}{2}x$がある.$k$は$k \neq -1$を満たす実数とする.放物線$C$は$-1$を除くすべての実数$k$に対して$2$定点$\mathrm{A}(x_\mathrm{A},\ y_\mathrm{A})$,$\mathrm{B}(x_\mathrm{B},\ y_\mathrm{B})$を通る.ただし,$x_\mathrm{A}<x_\mathrm{B}$とする.このとき,

(i) $2$点$\mathrm{A}$,$\mathrm{B}$の座標は
\[ (x_\mathrm{A},\ y_\mathrm{A})=\left( [$28$][$29$],\ [$30$] \right),\quad (x_\mathrm{B},\ y_\mathrm{B})=\left( [$31$],\ [$32$][$33$] \right) \]
である.
(ii) 直線$\ell$上に点$\mathrm{P}$をおき,$2$点$\mathrm{A}$,$\mathrm{B}$をそれぞれ点$\mathrm{P}$と線分で結ぶとき,距離の和$\mathrm{AP}+\mathrm{BP}$を最小にする点$\mathrm{P}$の座標は$\displaystyle \left( \frac{[$34$][$35$]}{[$36$]},\ \frac{[$37$][$38$]}{[$39$]} \right)$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
以下の文章の空欄に適切な数または式を入れて文章を完成させなさい.

三角形$\mathrm{ABC}$において$\mathrm{AB}=\mathrm{AC}=1$,$\angle \mathrm{BAC}=2\theta$とする.

(1)三角形$\mathrm{ABC}$の内接円$C_1$の半径を$R_1(\theta)$とする.$R_1(\theta)$を$\theta$の式で表すと$R_1(\theta)=[あ]$である.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_1(\theta)$が最大値をとるような$\theta$の値を$\theta_1$とすると
\[ \sum_{k=1}^\infty \sin^k \theta_1=[い] \]
が成り立つ.
(2)三角形$\mathrm{ABC}$の内側に次のように円$C_2$,$C_3$,$\cdots$,$C_n$,$\cdots$を作る.円$C_1$の外側にあって円$C_1$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_2$とし,円$C_1$,$C_2$の外側にあって円$C_2$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_3$とする.以下同様に自然数$n \geqq 2$に対して,円$C_1$,$C_2$,$\cdots$,$C_{n-1}$の外側にあって円$C_{n-1}$および辺$\mathrm{AB}$,$\mathrm{AC}$に同時に接する円を$C_n$とする.$C_n$の半径$R_n(\theta)$を$\theta$と$n$の式で表すと$R_n(\theta)=[う]$である.
(3)$x$の$2$次式$g_n(x)=[え]$に対して
\[ \frac{d}{d\theta}\log R_n(\theta)=-\frac{g_n(\sin \theta)}{\sin \theta \cos \theta} \]
が成り立つ.また$\theta$を$\displaystyle 0<\theta<\frac{\pi}{2}$の範囲で変化させるときに$R_n (\theta)$が最大値をとるような$\theta$の値を$\theta_n$とすると$\sin \theta_n=[お]$である.
(4)$\displaystyle \lim_{n \to \infty} n \sin \theta_n=[か]$である.このことから,$\theta=\theta_n$のときの円$C_n$の面積$S_n$に対して$\displaystyle \lim_{n \to \infty}n^2S_n=[き]$が成り立つ.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
$\mathrm{O}$を原点とする$xy$平面上に円$C:x^2+y^2=r^2$と放物線$\displaystyle D:y=\frac{1}{2}x^2-t$がある.ただし$r$と$t$はそれぞれ正の実数の定数とする.点$(0,\ -55)$から放物線$D$に傾きが正の接線を引くとき,その接線の傾きは$3 \sqrt{6}$である.放物線$D$上には$x$座標がそれぞれ$-4 \sqrt{3}$,$4 \sqrt{3}$である点$\mathrm{P}$,$\mathrm{Q}$があり,円$C$はこの$2$点$\mathrm{P}$,$\mathrm{Q}$を通る.このとき,

(1)$t=[$40$][$41$]$である.
(2)$r=[$42$]$である.
(3)円$C$と$2$線分$\mathrm{OP}$,$\mathrm{OQ}$で囲まれる$2$つの扇形のうち,$\angle \mathrm{POQ}$が$\pi$より小さい方の面積は$\displaystyle \frac{[$43$][$44$]}{[$45$]} \pi$である.
(4)円$C$と放物線$D$で囲まれた図形のうち,
\[ \left\{ \begin{array}{l}
x^2+y^2 \geqq r^2 \\
y \geqq \displaystyle\frac{1}{2}x^2-t
\end{array} \right. \]
で表される図形の面積は$\displaystyle [$46$][$47$][$48$] \sqrt{[$49$]}-\frac{[$50$][$51$]}{[$52$]} \pi$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
正四面体$\mathrm{OABC}$において辺$\mathrm{OA}$の中点を$\mathrm{D}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{E}$,辺$\mathrm{OC}$を$m:(1-m)$に内分する点を$\mathrm{F}$とする.ただし,$m$は$0<m<1$を満たす実数の定数とする.$\mathrm{E}$から$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{C}$の定める平面に垂線$\mathrm{EH}$を下ろし,直線$\mathrm{OH}$と線分$\mathrm{DF}$の交点を$\mathrm{I}$とする.三角形$\mathrm{ODE}$の面積は$\displaystyle \frac{9 \sqrt{3}}{4}$であり,四面体$\mathrm{ODEF}$の体積は正四面体$\mathrm{OABC}$の体積の$\displaystyle \frac{5}{54}$倍である.このとき,

(1)正四面体$\mathrm{OABC}$の一辺の長さは$[$63$] \sqrt{[$64$]}$であり,体積は$[$65$][$66$] \sqrt{[$67$]}$である.
(2)$\displaystyle m=\frac{[$68$]}{[$69$]}$である.
(3)$\overrightarrow{\mathrm{OI}}$を$\overrightarrow{\mathrm{OD}}$と$\overrightarrow{\mathrm{OF}}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OI}}=\frac{[$70$][$71$]}{[$72$][$73$]} \overrightarrow{\mathrm{OD}}+\frac{[$74$]}{[$75$][$76$]} \overrightarrow{\mathrm{OF}}$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第4問
座標空間内の$3$点$\mathrm{A}(1,\ 0,\ 1)$,$\mathrm{B}(0,\ 2,\ 3)$,$\mathrm{C}(0,\ 0,\ 3)$と原点$\mathrm{O}$を頂点とする四面体$\mathrm{OABC}$について考える.

四面体$\mathrm{OABC}$を平面$z=t (0<t<3)$で切ったときの切り口の面積を$f(t)$とする.$0<t \leqq 1$のとき$f(t)=[ソ]$である.また,$1<t<3$のとき平面$z=t$と辺$\mathrm{AB}$の交点の座標は$[タ]$となり,$f(t)=[チ]$となる.
次に,四面体$\mathrm{OABC}$において,$2$つの平面$z=t$と$z=t+2 (0<t<1)$の間にはさまれた部分の体積を$g(t)$とすると,その導関数は$g^\prime(t)=[ツ]$であり,$g(t)$は$t=[テ]$のとき最大値をとる.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
次の$[ ]$にあてはまる最も適当な数または式を解答欄に記入しなさい.

(1)等差数列$\{a_n\}$は,初項から第$5$項までの和は$50$で,$a_5=16$であるとする.このとき,一般項$a_n$は,$a_n=[ア]$となり,初項から第$n$項までの和$S_n$は$S_n=[イ]$となる.
(2)$(x+1)^8 (x-1)^4$を展開したとき,$x^{10}$の項の係数は$[ウ]$である.また,$(x^2+x+1)^6$を展開したとき,$x^{10}$の項の係数は$[エ]$である.
(3)三角形$\mathrm{ABC}$において,$\angle \mathrm{A}=60^\circ$,$\mathrm{AB}=6$,$\mathrm{AC}=7$のとき,三角形$\mathrm{ABC}$の面積$S$は$S=[オ]$,辺$\mathrm{BC}$の長さは$\mathrm{BC}=[カ]$,三角形$\mathrm{ABC}$の外接円の半径$R$は$R=[キ]$である.
(4)$12^n$の正の約数の個数が$28$個となるような自然数$n$は,$n=[ク]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第2問
次の$[ ]$にあてはまる最も適当な数または式などを解答欄に記入しなさい.

(1)座標平面上に曲線$C_1:y=x^2-1$がある.$x$軸に関して$C_1$に対称な曲線を$C_2$とすると,$C_2$を表す方程式は$[ケ]$である.
$0 \leqq a \leqq 1$とするとき,$-a \leqq x \leqq a$において,曲線$C_2$と直線$y=a^2-1$,および$2$直線$x=-a$,$x=a$で囲まれた図形の面積$S(a)$は,
\[ S(a)=[コ] \]
となる.$S(a)$は,$a=[サ]$のとき最大値$[シ]$をとる.
(2)関数$f(x)=8^x-6 \cdot 4^x+5 \cdot 2^x$を考える.$f(x)=-12$を満たす実数$x$をすべて求めると,$x=[ス]$となる.また,方程式$f(x)=k$が$3$つの実数解をもつような定数$k$の値の範囲は,$[セ]<k<[ソ]$である.
慶應義塾大学 私立 慶應義塾大学 2014年 第5問
以下の$[ト]$,$[ナ]$,$[ニ]$には三角関数は$\sin \theta$と$\cos \theta$のみを用いて記入し,$[ヌ]$には$x$の式,$[ネ]$には$y$の式を記入すること.

座標平面上の$2$点$(1,\ 0)$,$(0,\ 1)$を結ぶ曲線$C$が媒介変数$\theta$を用いて
\[ \left\{ \begin{array}{l}
x=f(\theta) \\
y=g(\theta)
\end{array} \right. \quad \left( 0 \leqq \theta \leqq \frac{\pi}{2} \right) \]
と表されているとする.いま,関数$f(\theta)$,$g(\theta)$は$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$で連続,$\displaystyle 0<\theta<\frac{\pi}{2}$で微分可能かつ$f^\prime(\theta) \neq 0$であるとする.また$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,点$(f(\theta),\ g(\theta))$における曲線$C$の接線の傾きが$-\tan \theta$であり,この接線から$x$軸,$y$軸で切り取られる線分の長さがつねに一定で$1$であるとする.
まず,この曲線$C$の方程式を求めたい.$\displaystyle 0<\theta<\frac{\pi}{2}$のとき,曲線$C$上の点$(f(\theta),\ g(\theta))$における接線を$y=-(\tan \theta)x+h(\theta)$と表すと$h(\theta)=[ト]$となる.この接線の傾きが$\displaystyle \frac{g^\prime(\theta)}{f^\prime(\theta)}$となることより,$f(\theta)=[ナ]$,$g(\theta)=[ニ]$となる.したがって,曲線$C$を$x,\ y$の方程式で表すと
\[ [ヌ]+[ネ]=1 \quad (x \geqq 0,\ y \geqq 0) \]
となる.
次に,点$(f(\theta),\ g(\theta))$における曲線$C$の法線を$\ell(\theta)$とする.$\displaystyle \theta \neq \frac{\pi}{4}$のとき$\ell(\theta)$と$\displaystyle \ell \left( \frac{\pi}{4} \right)$との交点の$x$座標を$X(\theta)$とすると,$\displaystyle \lim_{\theta \to \frac{\pi}{4}} X(\theta)=[ノ]$となる.
また,曲線$C$と$x$軸,$y$軸で囲まれた部分の面積は$[ハ]$である.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。