タグ「面積」の検索結果

64ページ目:全2409問中631問~640問を表示)
西南学院大学 私立 西南学院大学 2015年 第1問
点$\mathrm{A}(3,\ 4)$,$\mathrm{B}(8,\ 6)$と,$x$軸上を動く点$\mathrm{P}$がある.$\mathrm{AP}+\mathrm{BP}$が最小となるとき,以下の問に答えよ.

(1)点$\mathrm{A}$と点$\mathrm{P}$を通る直線$\ell$の方程式は,$y=[アイ]x+[ウエ]$である.
(2)点$\mathrm{P}$を頂点として,点$\mathrm{A}$を通る放物線$C$の方程式は,$y=[オ]x^2-[カキ]x+[クケ]$である.
(3)$\ell$と$C$で囲まれる図形の面積は,$\displaystyle \frac{[コ]}{[サ]}$である.
九州産業大学 私立 九州産業大学 2015年 第2問
円$x^2+y^2-6x+ay+4=0$上の点$\mathrm{A}(5,\ 1)$における接線を$\ell$とする.原点$\mathrm{O}$からこの円に引いた$2$本の接線のうち,傾きが正であるものの方程式を$y=mx$,接点を$\mathrm{B}$とする.また,この円の中心を$\mathrm{C}$とする.

(1)$a=[ア]$である.
(2)$\mathrm{C}$の座標は$([イ],\ [ウ])$である.
(3)接線$\ell$の傾きは$[エオ]$である.
(4)$\triangle \mathrm{OBC}$の面積は$\sqrt{[カ]}$である.
(5)$\displaystyle m=\frac{\sqrt{[キ]}}{[ク]}$である.
九州産業大学 私立 九州産業大学 2015年 第3問
$3$次関数$f(x)$は$x=-1$と$x=-5$で極値をとり,$f(0)=14$,$f(1)=64$とする.

(1)$f(x)=[ア]x^3+[イウ]x^2+[エオ]x+[カキ]$であり,
$f^\prime(x)=[ク]x^2+[ケコ]x+[サシ]$である.
(2)$f(x)$の極大値は$[スセ]$であり,極小値は$[ソ]$である.
(3)方程式$f(x)=0$の異なる実数解の個数は$[タ]$個である.
(4)$f^\prime(x)=g(x)$とおく.曲線$y=g(x)$と$x$軸とで囲まれる図形$A$の面積は$[チツ]$である.図形$A$が直線$x=a$によって$2$つに分割され,左側と右側の部分の面積の比が$5:27$であるならば,$a$の値は$[テト]$である.
九州産業大学 私立 九州産業大学 2015年 第5問
$\displaystyle 0<x \leqq \frac{1}{2}\pi$のとき,関数$f(x)=\{1+\log (\sin x)\} \cos x$,曲線$L:y=f(x)$について考える.

(1)$f(x)=0$のとき$\sin x$の値は$[ア]$と$[イ]$である.
(2)関数$f(x)$の導関数$f^\prime(x)=[ウ]$である.
(3)不定積分$\displaystyle \int f(x) \, dx=[エ]+C$である.ここで$C$は積分定数とする.
(4)曲線$L$と$x$軸で囲まれた部分の面積は$[オ]$である.
昭和大学 私立 昭和大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=x$,$\mathrm{BC}=4$,$\mathrm{CA}=6-x$とする.ただし,$1<x<5$である.

(1)$\angle \mathrm{ABC}={60}^\circ$のとき,$x$の値を求めよ.
(2)$\angle \mathrm{ABC}={60}^\circ$のとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(3)$\angle \mathrm{ABC}=\theta$とするとき,$\cos \theta$の値を$x$で表せ.
(4)$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta$の値を$x$で表せ.
(5)$\triangle \mathrm{ABC}$の面積の最大値とそのときの$x$の値を求めよ.
昭和大学 私立 昭和大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=x$,$\mathrm{BC}=4$,$\mathrm{CA}=6-x$とする.ただし,$1<x<5$である.

(1)$\angle \mathrm{ABC}={60}^\circ$のとき,$x$の値を求めよ.
(2)$\angle \mathrm{ABC}={60}^\circ$のとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
(3)$\angle \mathrm{ABC}=\theta$とするとき,$\cos \theta$の値を$x$で表せ.
(4)$\angle \mathrm{ABC}=\theta$とするとき,$\sin \theta$の値を$x$で表せ.
(5)$\triangle \mathrm{ABC}$の面積の最大値とそのときの$x$の値を求めよ.
広島経済大学 私立 広島経済大学 2015年 第4問
$\mathrm{AB}=5 \sqrt{2}$,$\mathrm{BC}=6$,$\angle \mathrm{B}={45}^\circ$の三角形$\mathrm{ABC}$の辺$\mathrm{BC}$上に$\mathrm{AC}=\mathrm{AD}$を満たす$\mathrm{C}$と異なる点$\mathrm{D}$を定める.次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)三角形$\mathrm{ABC}$の面積は$[$28$]$である.
(2)$\mathrm{AC}=\sqrt{[$29$]}$,$\mathrm{BD}=[$30$]$である.
(3)三角形$\mathrm{ADC}$の面積は$[$31$]$である.

(4)$\displaystyle \sin \angle \mathrm{CAD}=\frac{[$32$]}{[$33$]}$である.

(5)直線$\mathrm{AD}$が三角形$\mathrm{ABC}$の外接円と交わる点($\mathrm{A}$と異なる点)を$\mathrm{E}$とする.

このとき,$\displaystyle \mathrm{EC}=\frac{[$34$] \sqrt{[$35$]}}{[$36$]}$である.
広島経済大学 私立 広島経済大学 2015年 第3問
$\mathrm{AB}=4$,$\mathrm{BC}=1$の長方形$\mathrm{ABCD}$と三角形$\mathrm{APQ}$がある.三角形$\mathrm{APQ}$の頂点$\mathrm{P}$は長方形$\mathrm{ABCD}$の辺$\mathrm{BC}$上に,頂点$\mathrm{Q}$は辺$\mathrm{CD}$上にあり,$\mathrm{CQ}=4 \mathrm{BP} (\mathrm{BP} \neq 0)$を満たしている.三角形$\mathrm{APQ}$の面積を$S$とおいて,次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$\displaystyle \mathrm{BP}=\frac{1}{4}$のとき,$\displaystyle S=\frac{[$15$]}{[$16$]}$である.

(2)三角形$\mathrm{ABP}$と三角形$\mathrm{ADQ}$の面積の和は$[$17$]$である.
(3)$\mathrm{BP}=x (0<x \leqq 1)$とおくと$S=[$18$]x^2-[$19$]x+[$20$]$であり,$\displaystyle S=\frac{7}{4}$となるのは$\displaystyle x=\frac{[$21$] \pm \sqrt{[$22$]}}{[$23$]}$のときである.また$\displaystyle x=\frac{[$24$]}{[$25$]}$のとき$S$は最小となり,その値は$\displaystyle \frac{[$26$]}{[$27$]}$である.
昭和大学 私立 昭和大学 2015年 第3問
次の各問に答えよ.

(1)空間に$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 2,\ 3)$,$\mathrm{B}(2,\ -1,\ 4)$がある.次の問に答えよ.
$(1$-$1)$ $\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$の内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}$を求めよ.
$(1$-$2)$ $\cos \angle \mathrm{AOB}$の値を求めよ.
$(1$-$3)$ $\triangle \mathrm{OAB}$の面積を求めよ.
(2)$\displaystyle \left( 2x^3-\frac{1}{3x} \right)^9$の展開式における$\displaystyle \frac{1}{x}$の係数を求めよ.
(3)実数全体で定義された関数$\displaystyle f(x)=\frac{x^4+5x^2+11}{x^2+2}$の最小値を求めよ.
(4)曲線$y=\sqrt{2+|4x-2x^2|}$と直線$y=m(x+3)$が相異なる$4$個の交点をもつような定数$m$の値の範囲を求めよ.
広島経済大学 私立 広島経済大学 2015年 第4問
$\mathrm{AB}=2$,$\mathrm{BC}=1+\sqrt{2}$,$\angle \mathrm{B}={60}^\circ$の三角形$\mathrm{ABC}$の外接円を$\mathrm{O}$とする.頂点$\mathrm{A}$を通り辺$\mathrm{BC}$に垂直な直線が円$\mathrm{O}$と交わる点($\mathrm{A}$と異なる点)を$\mathrm{D}$とする.次の各問の空欄に当てはまる最も適切な数値を記入せよ.

(1)$\mathrm{AC}=\sqrt{[$34$]}$である.

(2)円$\mathrm{O}$の半径は$\displaystyle \frac{\sqrt{[$35$]}}{[$36$]}$である.

(3)$\displaystyle \cos \angle \mathrm{CAD}=\frac{\sqrt{[$37$]}}{[$38$]}$である.

(4)$\displaystyle \mathrm{AD}=\frac{[$39$] \sqrt{[$40$]}+\sqrt{[$41$]}}{[$42$]}$である.

(5)三角形$\mathrm{ACD}$の面積は$\displaystyle \frac{[$43$] \sqrt{[$44$]}+[$45$] \sqrt{[$46$]}}{[$47$]}$である.
但し$[$44$]<[$46$]$とする.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。