タグ「面積」の検索結果

34ページ目:全2409問中331問~340問を表示)
大阪大学 国立 大阪大学 2015年 第2問
直線$\ell:y=kx+m (k>0)$が円$C_1:x^2+(y-1)^2=1$と放物線$\displaystyle C_2:y=-\frac{1}{2}x^2$の両方に接している.このとき,以下の問いに答えよ.

(1)$k$と$m$を求めよ.
(2)直線$\ell$と放物線$C_2$および$y$軸とで囲まれた図形の面積を求めよ.
大阪大学 国立 大阪大学 2015年 第3問
平面上に長さ$2$の線分$\mathrm{AB}$を直径とする円$C$がある.$2$点$\mathrm{A}$,$\mathrm{B}$を除く$C$上の点$\mathrm{P}$に対し,$\mathrm{AP}=\mathrm{AQ}$となるように線分$\mathrm{AB}$上の点$\mathrm{Q}$をとる.また,直線$\mathrm{PQ}$と円$C$の交点のうち,$\mathrm{P}$でない方を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{AQR}$の面積を$\theta=\angle \mathrm{PAB}$を用いて表せ.
(2)点$\mathrm{P}$を動かして$\triangle \mathrm{AQR}$の面積が最大になるとき,$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を用いて表せ.
一橋大学 国立 一橋大学 2015年 第2問
座標平面上の原点を$\mathrm{O}$とする.点$\mathrm{A}(a,\ 0)$,点$\mathrm{B}(0,\ b)$および点$\mathrm{C}$が
\[ \mathrm{OC}=1,\quad \mathrm{AB}=\mathrm{BC}=\mathrm{CA} \]
を満たしながら動く.

(1)$s=a^2+b^2,\ t=ab$とする.$s$と$t$の関係を表す等式を求めよ.
(2)$\triangle \mathrm{ABC}$の面積のとりうる値の範囲を求めよ.
神戸大学 国立 神戸大学 2015年 第1問
座標平面上の$2$つの曲線$\displaystyle y=\frac{x-3}{x-4}$,$\displaystyle y=\frac{1}{4}(x-1)(x-3)$をそれぞれ$C_1$,$C_2$とする.以下の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の交点をすべて求めよ.
(2)$2$曲線$C_1$,$C_2$の概形をかき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
神戸大学 国立 神戸大学 2015年 第3問
$a$を正の実数とする.座標平面上の曲線$C$を
\[ y=x^4-2(a+1)x^3+3ax^2 \]
で定める.曲線$C$が$2$つの変曲点$\mathrm{P}$,$\mathrm{Q}$をもち,それらの$x$座標の差が$\sqrt{2}$であるとする.以下の問に答えよ.

(1)$a$の値を求めよ.
(2)線分$\mathrm{PQ}$の中点と$x$座標が一致するような,$C$上の点を$\mathrm{R}$とする.三角形$\mathrm{PQR}$の面積を求めよ.
(3)曲線$C$上の点$\mathrm{P}$における接線が$\mathrm{P}$以外で$C$と交わる点を$\mathrm{P}^\prime$とし,点$\mathrm{Q}$における接線が$\mathrm{Q}$以外で$C$と交わる点を$\mathrm{Q}^\prime$とする.線分$\mathrm{P}^\prime \mathrm{Q}^\prime$の中点の$x$座標を求めよ.
九州大学 国立 九州大学 2015年 第1問
$C_1$,$C_2$をそれぞれ次式で与えられる放物線の一部分とする.

$C_1:y=-x^2+2x,\quad 0 \leqq x \leqq 2$
$C_2:y=-x^2-2x,\quad -2 \leqq x \leqq 0$

また,$a$を実数とし,直線$y=a(x+4)$を$\ell$とする.

(1)直線$\ell$と$C_1$が異なる$2$つの共有点をもつための$a$の値の範囲を求めよ.
以下,$a$が$(1)$の条件を満たすとする.このとき,$\ell$と$C_1$で囲まれた領域の面積を$S_1$,$x$軸と$C_2$で囲まれた領域で$\ell$の下側にある部分の面積を$S_2$とする.
(2)$S_1$を$a$を用いて表せ.
(3)$S_1=S_2$を満たす実数$a$が$\displaystyle 0<a<\frac{1}{5}$の範囲に存在することを示せ.
九州大学 国立 九州大学 2015年 第3問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球がある.下の概略図のように,$y$軸の負の方向から仰角$\displaystyle \frac{\pi}{6}$で太陽光線が当たっている.この太陽光線はベクトル$(0,\ \sqrt{3},\ -1)$に平行である.球は光を通さないものとするとき,以下の問いに答えよ.
(図は省略)

(1)球の$z \geqq 0$の部分が$xy$平面上につくる影を考える.$k$を$-1<k<1$を満たす実数とするとき,$xy$平面上の直線$x=k$において,球の外で光が当たらない部分の$y$座標の範囲を$k$を用いて表せ.
(2)$xy$平面上において,球の外で光が当たらない部分の面積を求めよ.
(3)$z \geqq 0$において,球の外で光が当たらない部分の体積を求めよ.
広島大学 国立 広島大学 2015年 第2問
座標平面上の放物線
\[ C_n:y=x^2-p_nx+q_n \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を考える.ただし,$p_n,\ q_n$は
\[ p_1^2-4q_1=4,\quad p_n^2-4q_n>0 \qquad (n=2,\ 3,\ 4,\ \cdots) \]
を満たす実数とする.$C_n$と$x$軸との二つの交点を結ぶ線分の長さを$\ell_n$とする.また,$C_n$と$x$軸で囲まれた部分の面積$S_n$は
\[ \frac{S_{n+1}}{S_n}=\left( \frac{n+2}{\sqrt{n(n+1)}} \right)^3 \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$C_n$の頂点の$y$座標を$\ell_n$を用いて表せ.
(2)数列$\{\ell_n\}$の一般項を求めよ.
(3)$p_n=n \sqrt{n} (n=1,\ 2,\ 3,\ \cdots)$であるとき,$\displaystyle \lim_{n \to \infty} n \log \left( -\frac{2q_n}{n^2} \right)$を求めよ.ただし,$\log x$は$x$の自然対数である.
広島大学 国立 広島大学 2015年 第3問
座標平面上に原点$\mathrm{O}$と$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とする.点$\mathrm{C}$は$|\overrightarrow{\mathrm{OC}}|=1$,$0^\circ<\angle \mathrm{AOC}<{90}^\circ$,$0^\circ<\angle \mathrm{BOC}<{90}^\circ$を満たすとする.$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=t$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表せ.
(2)線分$\mathrm{AB}$と線分$\mathrm{OC}$の交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表せ.
(3)点$\mathrm{C}$から線分$\mathrm{OA}$に引いた垂線と線分$\mathrm{AB}$の交点を$\mathrm{E}$とする.$\mathrm{D}$は$(2)$で定めた点とする.このとき,$\triangle \mathrm{OBD}$と$\triangle \mathrm{CDE}$の面積の和を$t$を用いて表せ.
広島大学 国立 広島大学 2015年 第4問
$\alpha,\ \beta$は$\alpha>0$,$\beta>0$,$\alpha+\beta<1$を満たす実数とする.三つの放物線
\[ C_1:y=x(1-x),\quad C_2:y=x(1-\beta-x),\quad C_3:y=(x-\alpha)(1-x) \]
を考える.$C_2$と$C_3$の交点の$x$座標を$\gamma$とする.また,$C_1$,$C_2$,$C_3$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\gamma$を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$\alpha,\ \beta$が$\displaystyle \alpha+\beta=\frac{1}{4}$を満たしながら動くとき,$S$の最大値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。