タグ「面積」の検索結果

28ページ目:全2409問中271問~280問を表示)
広島工業大学 私立 広島工業大学 2016年 第6問
四角形$\mathrm{ABCD}$において,$\triangle \mathrm{ABC}$は$\angle \mathrm{C}={90}^\circ$の直角二等辺三角形,$\triangle \mathrm{ACD}$は正三角形である.$\mathrm{AC}=1$のとき,次の問いに答えよ.

(1)四角形$\mathrm{ABCD}$の面積を求めよ.
(2)$\triangle \mathrm{BCD}$の面積を求めよ.
(3)$\mathrm{BD}^2$を求めよ.
(4)$(3)$を用いて,$\displaystyle \cos {105}^\circ=\frac{\sqrt{2}-\sqrt{6}}{4}$を示せ.
工学院大学 私立 工学院大学 2016年 第4問
曲線$C:y=ax^2-6ax (x \leqq 3)$上の点$\mathrm{A}$の$x$座標は$2$である.以下の問いに答えよ.ただし,$a$は負の定数とする.

(1)$C$の点$\mathrm{A}$における接線$\ell$の方程式を求めよ.
(2)点$\mathrm{A}$で$\ell$と垂直に交わる直線$m$の方程式を求めよ.
(3)$C$と$\ell$および$y$軸で囲まれた部分の面積$S_1(a)$を求めよ.
(4)$C$と$m$および$x$軸で囲まれた部分の面積$S_2(a)$を求めよ.
工学院大学 私立 工学院大学 2016年 第5問
曲線$C:y=\sqrt{2x}$上の点$\mathrm{A}$の$x$座標は$4$である.以下の問いに答えよ.

(1)$C$の点$\mathrm{A}$における接線$\ell$の方程式を求めよ.
(2)$C$の点$\mathrm{A}$における法線$m$の方程式を求めよ.
(3)$C$と$\ell$および$y$軸で囲まれた部分の面積$S_1$を求めよ.
(4)$C$と$m$および$x$軸で囲まれた部分の面積を$S_2$とするとき,$\displaystyle \frac{S_1}{S_2}$の値を求めよ.
玉川大学 私立 玉川大学 2016年 第4問
曲線$C:y=x^3-12x$とその上の点$\mathrm{A}(1,\ -11)$がある.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$を通る曲線$C$の接線$2$本を求めよ.
(2)曲線$y=x^3+px^2+qx+r$と直線$y=mx+n$が異なる$3$点で交わるとき,その交点の$x$座標を左から$a,\ b,\ c$とする.曲線と直線の囲む部分の左側,右側の面積をそれぞれ$S$,$S^\prime$とするとき,
\[ S-S^\prime=\frac{1}{6}(c-a)^3 \left( b-\frac{a+c}{2} \right) \]
を示せ.
(3)点$\mathrm{A}$を通り,$(1)$で求めた$2$直線の傾きの間の値を傾きとしてもつ直線$\ell$と曲線$C$の囲む$2$つの部分の面積が等しい.このとき,直線$\ell$を求めよ.ここで,$(2)$から$\displaystyle b=\frac{a+c}{2}$のとき,$S=S^\prime$となることに注意せよ.
東京経済大学 私立 東京経済大学 2016年 第3問
点$\mathrm{A}(-1,\ -3)$から円$x^2+y^2=5$に接線を引くと,接点の座標は$(-[セ],\ -[ソ])$と$([タ],\ -[チ])$である.また,$2$本の接線と円で囲まれた部分(ただし,円の内部を含まない)の面積は,$\displaystyle [ツ]-\frac{[テ]}{[ト]} \pi$である.
大阪工業大学 私立 大阪工業大学 2016年 第4問
関数$f(x)=|x^2-x|-x^2$について,次の問いに答えよ.

(1)不等式$x^2-x<0$を解け.
(2)$y=f(x)$のグラフをかけ.
(3)$y=f(x)$のグラフと$x$軸で囲まれた図形の面積$S$を求めよ.
(4)直線$\displaystyle y=a \left( x-\frac{1}{2} \right)$と$y=f(x)$のグラフがちょうど$2$点を共有するような定数$a$の値をすべて求めよ.
福岡大学 私立 福岡大学 2016年 第6問
$f(x)=(x-1) \sqrt{-x^2+4x-3} (1 \leqq x \leqq 3)$とする.このとき,次の問いに答えよ.

(1)関数$y=f(x)$の極値を求めよ.
(2)曲線$y=f(x)$と,$2$直線$x=1$,$\displaystyle y=\frac{3 \sqrt{3}}{4}$とで囲まれる図形の面積を求めよ.
福岡大学 私立 福岡大学 2016年 第1問
$2$直線$x+2y=1$,$(a+1)x+3ay=9$が平行になるように定数$a$の値を定めると$a=[ ]$である.このとき,$2$直線と直線$y=x$および$x$軸で囲まれた部分の面積は$[ ]$である.
福岡大学 私立 福岡大学 2016年 第3問
曲線$C:y=2 \cos^3 x+3 \cos x (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)曲線$C$の増減表を書き,変曲点を求めよ.
(2)曲線$C$と$x$軸,$y$軸で囲まれる部分の面積を求めよ.
東京薬科大学 私立 東京薬科大学 2016年 第5問
$x$の関数$f(x)$を
\[ f(x)=\left\{ \begin{array}{cl}
ax & (x \leqq 1) \\
(4-a)x+2(a-2) & (1<x) \phantom{\frac{[ ]}{2}}
\end{array} \right. \]
と定義する.ただし,$a$は$0<a<1$を満たす実数である.

(1)$y=f(x)$のグラフと,放物線$y=x^2$の共有点の個数は$[ロ]$である.このうち,$a$の値によらない共有点の座標は,$([ワ],\ [ヲ])$,$([ン],\ [あ])$である.ただし,$[ワ]<[ン]$とする.
(2)関数$y=f(x)$のグラフと,放物線$y=x^2$によって囲まれる図形の面積の総和を$S(a)$とすると,
\[ S(a)=\frac{[い]}{[う]}a^3-a+\frac{[え]}{[お]} \]
である.
(3)$S(a)$は$\displaystyle a=\frac{\sqrt{[か]}}{[き]}$のとき,最小値$\displaystyle \frac{[く]-\sqrt{[け]}}{[こ]}$をとる.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。