タグ「面積」の検索結果

20ページ目:全2409問中191問~200問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第1問
次の$[ ]$を埋めよ.

(1)$2016$の正の約数は全部で$[ア]$個あり,それらの平均は$[イ]$である.
(2)$\displaystyle 0<\theta<\frac{\pi}{2}$とする.座標平面上に$3$点$\mathrm{P}_0(1,\ 0)$,$\mathrm{P}_1(\cos \theta,\ \sin \theta)$,$\mathrm{P}_2(\cos 2\theta,\ \sin 2\theta)$がある.$x$軸に関して,点$\mathrm{P}_2$,$\mathrm{P}_1$と対称な点をそれぞれ$\mathrm{P}_3$,$\mathrm{P}_4$とし,さらに,四角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \mathrm{P}_4$の面積を$S_1(\theta)$,三角形$\mathrm{P}_0 \mathrm{P}_1 \mathrm{P}_4$の面積を$S_2 (\theta)$とする.


(i) $\displaystyle S_1 \left( \frac{\pi}{3} \right)=[ウ]$である.

(ii) $\displaystyle \lim_{\theta \to +0} \frac{S_1(\theta)}{S_2(\theta)}=[エ]$である.

(iii) $S_1(\theta)$は$\cos \theta=[オ]$のとき最大値$[カ]$をとる.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
四面体$\mathrm{OABC}$の$4$つの面はすべて合同であり,$\mathrm{OA}=\sqrt{10}$,$\mathrm{OB}=2$,$\mathrm{OC}=3$であるとする.このとき,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[ニ]$であり,三角形$\mathrm{ABC}$の面積は$[ヌ]$である.

いま,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{AH}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて$\overrightarrow{\mathrm{AH}}=[ネ]$と表される.また,四面体$\mathrm{OABC}$の体積は$[ノ]$である.
次に,線分$\mathrm{AH}$と線分$\mathrm{BC}$の交点を$\mathrm{P}$,点$\mathrm{P}$から線分$\mathrm{AC}$に下ろした垂線を$\mathrm{PQ}$とすると,$\mathrm{PQ}$の長さは$[ハ]$である.また,$2$点$\mathrm{P}$,$\mathrm{Q}$を通り平面$\alpha$に垂直な平面による四面体$\mathrm{OABC}$の切り口の面積は$[ヒ]$である.

(図は省略)
慶應義塾大学 私立 慶應義塾大学 2016年 第2問
$a$を正の実数,$b,\ c$を実数とする.$f(x)=ax^2+bx+c$とし,$f^\prime(x)$を$f(x)$の導関数とする.

(1)放物線$y=f(x)$と直線$y=f^\prime(x)$が接するための必要十分条件は
\[ b^2=[ウ] \qquad \cdots\cdots(\mathrm{A}) \]
である.
(2)条件$(\mathrm{A})$が成り立つとき,その接点の座標は
\[ \left( [$4$]-\frac{b}{[$5$]a},\ [$6$]a \right) \]
である.このとき,直線$y=f^\prime(x)$は放物線$y=-f(x)$とも接し,その接点$\mathrm{P}$の座標は
\[ \left( [$7$][$8$]-\frac{b}{[$9$]a},\ [$10$][$11$]a \right) \]
である.
(3)直線$y=f^\prime(x)$が原点を中心とする半径$\sqrt{2}$の円$\mathrm{O}$と接するための必要十分条件は
\[ b^2=[エ] \qquad \cdots\cdots(\mathrm{B}) \]
である.この条件が成り立つとき,その接点を$\mathrm{Q}$とする.
(4)条件$(\mathrm{A}),\ (\mathrm{B})$が成り立ち,さらに点$\mathrm{P}$が点$\mathrm{Q}$と一致するのは,
\[ a=\frac{[$12$]}{[$13$]},\quad b=[$14$][$15$],\quad c=\frac{[$16$]}{[$17$]} \]
のときである.このとき,円$\mathrm{O}$は放物線$y=f(x)$とただ$1$つの共有点$([$18$],\ [$19$])$をもち,放物線$y=f(x)$,直線$y=f^\prime(x)$および円$\mathrm{O}$で囲まれた図形の面積は
\[ \frac{[$20$]}{[$21$]}-\frac{[$22$]}{[$23$]} \pi \]
である.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,$4$つの正三角形を側面とする正四角錐$\mathrm{O}$-$\mathrm{ABCD}$がある.$\mathrm{OA}$と$\mathrm{OC}$を$4:1$に内分する点をそれぞれ$\mathrm{P}$と$\mathrm{R}$,正の実数$r$に対して$\mathrm{OB}$を$1:r$に内分する点を$\mathrm{Q}$とする.

(1)内積$\overrightarrow{\mathrm{PQ}} \cdot \overrightarrow{\mathrm{QR}}$と$\overrightarrow{\mathrm{PR}} \cdot \overrightarrow{\mathrm{OQ}}$を計算せよ.答が$r$の有理式になる場合は,$1$つの既約分数式で解答せよ.
(2)線分$\mathrm{PR}$の中点を$\mathrm{M}$とする.$\mathrm{QM}$と$\mathrm{OD}$が平行になる$r$を求めよ.
(3)$\mathrm{QM}$と$\mathrm{OD}$が平行なとき,$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面$\alpha$で正四角錐$\mathrm{O}$-$\mathrm{ABCD}$を$2$つの多面体に切り分ける.このとき,$\alpha$による切り口の図形の面積,および,切り分けたうち頂点$\mathrm{O}$を含む多面体の体積を求めよ.
早稲田大学 私立 早稲田大学 2016年 第1問
次の問に答えよ.

(1)直線$-2x+4y+5=0$を$\ell$とする.点$\mathrm{A}(2,\ 4)$を通り,直線$\ell$に垂直な直線を$m$とし,同じく点$\mathrm{A}$を通り,$x$軸に平行な直線を$n$とする.直線$\ell$と直線$m$の交点を$\mathrm{B}$とし,直線$\ell$と直線$n$の交点を$\mathrm{C}$とするとき,次の各問いに答えよ.

(i) 点$\mathrm{B}$の座標は$([ア],\ [イ])$である.
(ii) 線分$\mathrm{AB}$の長さは$[ウ]$である.
(iii) 直線$\ell$上で線分$\mathrm{CB}$を$2:1$に外分する点を$\mathrm{D}$とし,直線$m$上で線分$\mathrm{AB}$を$3:2$に外分する点を$\mathrm{E}$とするとき,四角形$\mathrm{ACED}$の面積は$[エ]$である.

(2)座標平面上に定点$\mathrm{A}(-1,\ 0)$と$\mathrm{B}(1,\ 0)$が与えられているとし,動点$\mathrm{P}$,$\mathrm{Q}$は,それぞれ$\mathrm{A}$および$\mathrm{B}$とは一致しないところを動くものとするとき,次の各問いに答えよ.

(i) 点$\mathrm{P}(x,\ y)$が$\angle \mathrm{APB}={90}^\circ$を満たすように動くとき,点$\mathrm{P}$の$y$座標の最大値は$[オ]$である.
(ii) 点$\mathrm{Q}(x,\ y)$が$\angle \mathrm{AQB}={120}^\circ$を満たすように動くとき,点$\mathrm{Q}$の$y$座標の最大値は$[カ]$であり,また,点$\mathrm{Q}$が動いてできる曲線に$2$点$\mathrm{A}$,$\mathrm{B}$を付け加えた曲線を$C$とすると,曲線$C$が囲む部分の面積は$[キ]$である.

(3)$a$を正の実数とし,$\displaystyle a \neq \frac{1}{2}$であるとする.曲線$C:y=x^2-2x$上の$2$点$\mathrm{P}$,$\mathrm{Q}$を考える.点$\mathrm{P}$の座標を$\displaystyle \left( \frac{3}{2},\ -\frac{3}{4} \right)$とし,点$\mathrm{Q}$の座標を$(a+1,\ a^2-1)$とする.点$\mathrm{P}$を通り$\mathrm{P}$における$C$の接線に直交する直線を$\ell$とし,点$\mathrm{Q}$を通り$\mathrm{Q}$における$C$の接線に直交する直線を$m$とする.$2$直線$\ell$と$m$の交点が曲線$C$上にあるとき,次の各問いに答えよ.

(i) $a$の値は$[ク]$である.
(ii) $2$直線$\ell$,$m$と曲線$C$とで囲まれた領域で$x \geqq 0$を満たす部分の面積は$[ケ]$である.
早稲田大学 私立 早稲田大学 2016年 第4問
以下の問に答えよ.

(1)次の空欄にあてはまる式または数を記入せよ.
半径$1$の円$\mathrm{O}$に内接する長方形$\mathrm{ABCD}$がある.角$\mathrm{OAB}$を$\displaystyle x \left( 0<x<\frac{\pi}{2} \right)$とするとき,長方形$\mathrm{ABCD}$の面積は$[ア]$となる.したがって,$x=[イ]$のとき最大面積$[ウ]$をとる.
(2)半径$1$の円$\mathrm{O}$に内接する$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の内角
\[ \mathrm{A}_k \mathrm{A}_{k+1} \mathrm{A}_{k+2} \quad (k=1,\ 2,\ \cdots,\ n,\ n \geqq 3 \;;\; \text{ただし,} \mathrm{A}_{n+1}=\mathrm{A}_1,\ \mathrm{A}_{n+2}=\mathrm{A}_2) \]
がすべて$\alpha (0<\alpha<\pi)$に等しいとする.このとき,次の問に答えよ.

(i) $a_k (k=1,\ 2,\ \cdots,\ n)$は弧$\mathrm{A}_k \mathrm{A}_{k+1}$の長さを表すとする.角$\displaystyle \mathrm{OA}_k \mathrm{A}_{k+1}=\theta_k \left( 0<\theta_k<\frac{\pi}{2} \right)$とおくとき,$a_k$,$a_{k+1}$および$a_k+a_{k+1}$を,$\theta_k$,$\alpha$を用いて表せ.
(ii) $n$が奇数のとき,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$は正$n$角形となることを示せ.
(iii) $n$が偶数のとき,$\theta_1=\theta_3=\cdots =\theta_{n-1}$を示せ.さらに,その等しい角を$\theta$とおいて,$n$角形$\mathrm{A}_1 \mathrm{A}_2 \cdots \mathrm{A}_n$の面積$S_n(\theta)$を$\alpha$,$\theta$を用いて表せ.
\mon[$\tokeishi$] $\alpha$を$n$の式で表し,$(ⅲ)$における$S_n(\theta)$の最大値とそのときの$\theta$を$n$の式で表せ.

(図は省略)
早稲田大学 私立 早稲田大学 2016年 第3問
座標平面上の動点$\mathrm{P}_t(x,\ y)$の座標が,$t$の関数
\[ x=e^{-t} \cos t,\quad y=e^{-t} \sin t \]
で与えられている.また$\mathrm{O}$を原点とする.実数$a,\ b$で$0<b-a<2\pi$であるものに対して,線分$\mathrm{OP}_a$と,動点$\mathrm{P}_t$が$t=a$から$t=b$まで動くときに描く曲線と,線分$\mathrm{OP}_b$とによって囲まれる部分の面積を$S(a,\ b)$とおく.次の問に答えよ.

(1)$f(t)=S(0,\ t)$とする.導関数$\displaystyle \frac{d}{dt}f(t)$を求めよ.
(2)自然数$n$に対して,$\displaystyle U(n)=S \left( \frac{n-1}{2} \pi,\ \frac{n}{2} \pi \right)$とおく.$U(n)$を求めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty U(n)$の和を求めよ.
早稲田大学 私立 早稲田大学 2016年 第3問
曲線$C:y=x^2$上の点を$\mathrm{P}$とする.ただし$\mathrm{P}$の$x$座標は正とする.点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{P}$を通り$\ell$に垂直な直線を$m$とする.直線$m$と曲線$C$が$\mathrm{P}$とは異なる交点をもつとき,その点を$\mathrm{Q}$とする.点$\mathrm{P}$が曲線$C$上を動くとき,以下の問に答えよ.

(1)点$\mathrm{Q}$における$C$の接線を$n$とし,$\ell$と$n$との交点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を$(p,\ q)$とするとき
\[ q=\frac{[キ]}{[ク]p^2}+\frac{[ケ]}{[コ]} \]
が成り立つ.
(2)曲線$C$と線分$\mathrm{PQ}$で囲まれる部分の面積の最小値は$\displaystyle \frac{[サ]}{[シ]}$であり,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標は
\[ \mathrm{P} \left( \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right),\quad \mathrm{Q} \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right) \]
である.
早稲田大学 私立 早稲田大学 2016年 第3問
曲線$C:y=x^2$上の点を$\mathrm{P}$とする.ただし$\mathrm{P}$の$x$座標は正とする.点$\mathrm{P}$における$C$の接線を$\ell$,点$\mathrm{P}$を通り$\ell$に垂直な直線を$m$とする.直線$m$と曲線$C$が$\mathrm{P}$とは異なる交点をもつとき,その点を$\mathrm{Q}$とする.点$\mathrm{P}$が曲線$C$上を動くとき,以下の問に答えよ.

(1)点$\mathrm{Q}$における$C$の接線を$n$とし,$\ell$と$n$との交点を$\mathrm{R}$とする.点$\mathrm{R}$の座標を$(p,\ q)$とするとき
\[ q=\frac{[キ]}{[ク]p^2}+\frac{[ケ]}{[コ]} \]
が成り立つ.
(2)曲線$C$と線分$\mathrm{PQ}$で囲まれる部分の面積の最小値は$\displaystyle \frac{[サ]}{[シ]}$であり,そのときの点$\mathrm{P}$,$\mathrm{Q}$の座標は
\[ \mathrm{P} \left( \frac{[ス]}{[セ]},\ \frac{[ソ]}{[タ]} \right),\quad \mathrm{Q} \left( \frac{[チ]}{[ツ]},\ \frac{[テ]}{[ト]} \right) \]
である.
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[ク]$に当てはまる数または式を記入せよ.

(1)赤と青の$2$色を両方とも必ず用いて,正四面体の各面を塗り分ける場合の数は$[ア]$通りである.ただし,回転して一致する場合は同じものとみなす.
(2)$n$を$1 \leqq n \leqq 16$を満たす整数とする.$5n$を$17$で割ったときの余りが$1$となるとき,$n=[イ]$である.
(3)$A=\log_4 120-\log_4 6-\log_4 10$を計算すると,$A=[ウ]$である.
(4)$k$を実数とし,$2$次方程式$x^2+kx-1=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-(k+4)x+1=0$が$2$つの解$\alpha^2$と$\beta^2$を持つとき,$k$の値をすべて求めると,$k=[エ]$である.
(5)$a,\ b$を実数とする.$x$の$2$次式$f(x)$が,$x^2 f^\prime(x)-f(x)=x^3+ax^2+bx$を満たすとき,$a+b=[オ]$である.
(6)三角形$\mathrm{ABC}$の辺の長さがそれぞれ$\mathrm{AB}=2$,$\mathrm{BC}=3$,$\mathrm{CA}=4$のとき,三角形$\mathrm{ABC}$に内接する円の半径は$[カ]$である.
(7)$\displaystyle 0 \leqq \theta<\frac{\pi}{2}$において,$\tan \theta=2$が成り立つとき,$\cos \theta=[キ]$である.
(8)曲線$y=x^3-x^2+x+1$と曲線$y=x^3-2x^2+5x-2$で囲まれた図形の面積は$[ク]$である.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。