タグ「面積」の検索結果

2ページ目:全2409問中11問~20問を表示)
広島大学 国立 広島大学 2016年 第2問
次の問いに答えよ.

(1)$a$を正の定数とする.関数$\displaystyle f(x)=\frac{e^x-ae^{-x}}{2}$の逆関数$f^{-1}(x)$を求めよ.
(2)$(1)$で求めた$f^{-1}(x)$の導関数を求めよ.
(3)$c$を正の定数とする.$x$軸,$y$軸,直線$x=c$および曲線$\displaystyle y=\frac{1}{\sqrt{x^2+c^2}}$で囲まれる部分の面積を求めよ.
広島大学 国立 広島大学 2016年 第1問
$a$を正の定数とし,座標平面上において,
\[ \text{円}C_1:x^2+y^2=1,\quad \text{放物線}C_2:y=ax^2+1 \]
を考える.$C_1$上の点$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$における$C_1$の接線$\ell$は点$\mathrm{Q}(s,\ t)$で$C_2$に接している.次の問いに答えよ.

(1)$s,\ t$および$a$を求めよ.
(2)$C_2,\ \ell$および$y$軸で囲まれた部分の面積を求めよ.
(3)円$C_1$上の点が点$\mathrm{P}$から点$\mathrm{R}(0,\ 1)$まで反時計回りに動いてできる円弧を$C_3$とする.$C_2$,$\ell$および$C_3$で囲まれた部分の面積を求めよ.
東京大学 国立 東京大学 2016年 第3問
$a$を$1<a<3$をみたす実数とし,座標空間内の$4$点
\[ \mathrm{P}_1(1,\ 0,\ 1),\quad \mathrm{P}_2(1,\ 1,\ 1),\quad \mathrm{P}_3(1,\ 0,\ 3),\quad \mathrm{Q}(0,\ 0,\ a) \]
を考える.直線$\mathrm{P}_1 \mathrm{Q}$,$\mathrm{P}_2 \mathrm{Q}$,$\mathrm{P}_3 \mathrm{Q}$と$xy$平面の交点をそれぞれ$\mathrm{R}_1$,$\mathrm{R}_2$,$\mathrm{R}_3$として,三角形$\mathrm{R}_1 \mathrm{R}_2 \mathrm{R}_3$の面積を$S(a)$とする.$S(a)$を最小にする$a$と,そのときの$S(a)$の値を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第1問
関数$\displaystyle f(x)=\frac{x-1}{x^2+1}$のグラフを曲線$C$とする.

(1)関数$f(x)$の極値を求めよ.
(2)曲線$C$の変曲点を求めよ.
(3)曲線$C$上の点$(0,\ f(0))$における接線を$\ell$とする.曲線$C$と接線$\ell$とで囲まれた図形の面積$S$を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第3問
座標空間内に
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A}(1,\ 2,\ 2),\quad \mathrm{B}(1,\ 0,\ -1),\quad \mathrm{C}(2,\ -1,\ 1) \]
を頂点とする四面体$\mathrm{OABC}$がある.$t>0$に対して半直線$\mathrm{OB}$上の点$\mathrm{P}$を$\mathrm{OB}:\mathrm{OP}=1:t$となるようにとる.

(1)内積$\overrightarrow{\mathrm{AC}} \cdot \overrightarrow{\mathrm{AP}}$を$t$を用いて表せ.
(2)$\triangle \mathrm{APC}$の面積を$S(t)$とおく.$S(t)$が最小になる$t$の値と,そのときの$S(t)$の値を求めよ.
(3)点$\mathrm{Q}$は直線$\mathrm{OB}$上にあり,点$\mathrm{R}$は直線$\mathrm{AC}$上にある.線分$\mathrm{QR}$の長さの最小値と,そのときの点$\mathrm{R}$の座標を求めよ.
名古屋工業大学 国立 名古屋工業大学 2016年 第4問
実数$t$に対し,複素数
\[ \left( \frac{1}{2}+\cos t+i \sin t \right)^2 \]
の実部を$f(t)$,虚部を$g(t)$とする.座標平面上に
\[ \text{曲線}C:x=f(t),\quad y=g(t) \quad (0 \leqq t \leqq \pi) \]
がある.

(1)$0 \leqq t \leqq \pi$のとき$f(t)$のとる値の範囲を求めよ.

(2)曲線$C$上の点$\displaystyle \mathrm{P} \left( f \left( \frac{\pi}{3} \right),\ g \left( \frac{\pi}{3} \right) \right)$における接線の方程式を求めよ.

(3)曲線$C$の$y \leqq 0$の範囲にある部分と$x$軸とで囲まれた図形の面積$S$を求めよ.
名古屋大学 国立 名古屋大学 2016年 第2問
$2$つの円$C:(x-1)^2+y^2=1$と$D:(x+2)^2+y^2=7^2$を考える.また原点を$\mathrm{O}(0,\ 0)$とする.このとき,次の問に答えよ.

(1)円$C$上に,$y$座標が正であるような点$\mathrm{P}$をとり,$x$軸の正の部分と線分$\mathrm{OP}$のなす角を$\theta$とする.このとき,点$\mathrm{P}$の座標と線分$\mathrm{OP}$の長さを$\theta$を用いて表せ.
(2)$(1)$でとった点$\mathrm{P}$を固定したまま,点$\mathrm{Q}$が円$D$上を動くとき,$\triangle \mathrm{OPQ}$の面積が最大になるときの$\mathrm{Q}$の座標を$\theta$を用いて表せ.
(3)点$\mathrm{P}$が円$C$上を動き,点$\mathrm{Q}$が円$D$上を動くとき,$\triangle \mathrm{OPQ}$の面積の最大値を求めよ.

ただし$(2)$,$(3)$においては,$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$が同一直線上にあるときは,$\triangle \mathrm{OPQ}$の面積は$0$であるとする.
岡山大学 国立 岡山大学 2016年 第3問
$a$は正の数とし,次の関数$y=f_a(x)$のグラフの変曲点を$\mathrm{P}$とする.
\[ f_a(x)=axe^{-\frac{x}{a}} \quad (x \geqq 0) \]
このとき以下の問いに答えよ.

(1)点$\mathrm{P}$の座標を求めよ.
(2)$a$が区間$1 \leqq a \leqq 2$全体を動くとき,点$\mathrm{P}$が描く曲線$C$の概形を図示せよ.
(3)$x \geqq 0$における曲線$y=f_1(x)$,$y=f_2(x)$と$(2)$の曲線$C$の$3$曲線で囲まれた部分の面積を求めよ.
九州工業大学 国立 九州工業大学 2016年 第1問
座標平面上の曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と点$\mathrm{P}(s,\ t) (s>0,\ t>0,\ st<1)$を考える.また,$u=st$とする.点$\mathrm{P}$を通る曲線$C$の$2$本の接線をそれぞれ$\ell_1,\ \ell_2$とし,これらの接線と曲線$C$との接点をそれぞれ$\displaystyle \mathrm{A} \left( a,\ \frac{1}{a} \right)$,$\displaystyle \mathrm{B} \left( b,\ \frac{1}{b} \right)$とする.ただし,$a<b$とする.以下の問いに答えよ.

(1)$a,\ b$を$s,\ t$を用いて表せ.
(2)$2$点$\mathrm{E}(a,\ 0)$,$\mathrm{F}(b,\ 0)$を考える.台形$\mathrm{ABFE}$の面積を$u$を用いて表せ.
(3)$\triangle \mathrm{PAB}$の面積を$u$を用いて表せ.
(4)$(3)$で求めた$\triangle \mathrm{PAB}$の面積を$S(u)$とする.$S(u)$は区間$0<u<1$で減少することを示せ.
(5)点$\mathrm{P}$が$2$点$(3,\ 0)$,$(0,\ 1)$を結ぶ線分上の端点以外にあるものとする.このとき,$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.また,そのときの面積を求めよ.
九州大学 国立 九州大学 2016年 第1問
座標平面において,$x$軸上に$3$点$(0,\ 0)$,$(\alpha,\ 0)$,$(\beta,\ 0) (0<\alpha<\beta)$があり,曲線$C:y=x^3+ax^2+bx$が$x$軸とこの$3$点で交わっているものとする.ただし,$a,\ b$は実数である.このとき,以下の問いに答えよ.

(1)曲線$C$と$x$軸で囲まれた$2$つの部分の面積の和を$S$とする.$S$を$\alpha$と$\beta$の式で表せ.
(2)$\beta$の値を固定して,$0<\alpha<\beta$の範囲で$\alpha$を動かすとき,$S$を最小とする$\alpha$を$\beta$の式で表せ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。