タグ「面積」の検索結果

14ページ目:全2409問中131問~140問を表示)
島根大学 国立 島根大学 2016年 第4問
$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.$xy$平面上の曲線$\displaystyle \frac{x^2}{\cos^2 \alpha}+\frac{y^2}{\sin^2 \alpha}=\frac{1}{\cos^2 \alpha}$の$x \geqq 0$,$y \geqq 0$の部分を$C(\alpha)$とし,曲線$C(\alpha)$と$y$軸,および直線$y=x$で囲まれた図形を$D(\alpha)$で表す.次の問いに答えよ.

(1)曲線$C(\alpha)$と直線$y=x$の交点の座標を求めよ.
(2)図形$D(\alpha)$の面積$S(\alpha)$を求めよ.
(3)図形$D(\alpha)$を$x$軸のまわりに$1$回転してできる立体の体積$V(\alpha)$を求めよ.
(4)$(2)$,$(3)$で求めた$S(\alpha)$,$V(\alpha)$に対して,$\displaystyle \lim_{\alpha \to +0} \frac{\{V(\alpha)\}^2}{\{S(\alpha)\}^3}$を求めよ.
島根大学 国立 島根大学 2016年 第4問
$\displaystyle 0<\alpha<\frac{\pi}{2}$とする.$xy$平面上の曲線$\displaystyle \frac{x^2}{\cos^2 \alpha}+\frac{y^2}{\sin^2 \alpha}=\frac{1}{\cos^2 \alpha}$の$x \geqq 0$,$y \geqq 0$の部分を$C(\alpha)$とし,曲線$C(\alpha)$と$y$軸,および直線$y=x$で囲まれた図形を$D(\alpha)$で表す.次の問いに答えよ.

(1)曲線$C(\alpha)$と直線$y=x$の交点の座標を求めよ.
(2)図形$D(\alpha)$の面積$S(\alpha)$を求めよ.
(3)図形$D(\alpha)$を$x$軸のまわりに$1$回転してできる立体の体積$V(\alpha)$を求めよ.
(4)$(2)$,$(3)$で求めた$S(\alpha)$,$V(\alpha)$に対して,$\displaystyle \lim_{\alpha \to +0} \frac{\{V(\alpha)\}^2}{\{S(\alpha)\}^3}$を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第4問
$a$を$0<a<1$である実数とする.座標平面において,直線$y=a$と$x$軸および$2$直線$x=a$,$x=1$で囲まれた部分を$D_1$とし,曲線$y=(x-1)^2+1$と直線$y=a$および$2$直線$x=0$,$x=a$で囲まれた部分を$D_2$とする.このとき,次の問いに答えよ.

(1)座標平面に$D_1$と$D_2$を図示せよ.
(2)$D_1$の面積$S_1$を$a$の式で表せ.
(3)$D_2$の面積$S_2$を$a$の式で表せ.
(4)$S=S_1+S_2$とするとき,$S$を最大にする$a$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第4問
$a$を$0<a<1$である実数とする.座標平面において,直線$y=a$と$x$軸および$2$直線$x=a$,$x=1$で囲まれた部分を$D_1$とし,曲線$y=(x-1)^2+1$と直線$y=a$および$2$直線$x=0$,$x=a$で囲まれた部分を$D_2$とする.このとき,次の問いに答えよ.

(1)座標平面に$D_1$と$D_2$を図示せよ.
(2)$D_1$の面積$S_1$を$a$の式で表せ.
(3)$D_2$の面積$S_2$を$a$の式で表せ.
(4)$S=S_1+S_2$とするとき,$S$を最大にする$a$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第4問
座標平面上の曲線$y^2-2x-2=0$と直線$\displaystyle x+y=\frac{1}{2}$で囲まれた図形を$D$とする.このとき,次の問いに答えよ.

(1)座標平面に$D$を図示せよ.
(2)$D$の面積を求めよ.
(3)点$\mathrm{P}(x,\ y)$が$D$の内部および境界線上を動くとき,$3x+2y$の値がとりうる範囲を求めよ.
山梨大学 国立 山梨大学 2016年 第2問
曲線$C_1:y=(x-a)^2-4$と直線$\ell:y=2x-7$が点$\mathrm{P}$で接している.曲線$C_2$は,$y=-x^2$を平行移動した曲線で,$\mathrm{P}$を通り,直線$y=6$の$x<0$の部分に接している.ただし,$a$は実数とする.

(1)$a$の値を求めよ.
(2)$C_2$の方程式を求め,$C_1$と$C_2$の共有点の座標をすべて求めよ.
(3)$C_1$と$C_2$で囲まれた図形の面積$S$を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第5問
座標平面上の曲線$\displaystyle C:y=\sin \pi x \left( 0<x<\frac{1}{2} \right)$の上に点$\mathrm{P}(a,\ \sin \pi a)$をとる.点$\mathrm{P}$における$C$の接線と法線をそれぞれ$\ell$,$m$とする.$\ell$と$y$軸の交点を$\mathrm{Q}(0,\ q)$,$m$と$x$軸の交点を$\mathrm{R}(r,\ 0)$とし,点$\mathrm{P}$から$y$軸に下ろした垂線の足を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求め,$q$を$a$を用いて表せ.
(2)法線$m$の方程式を求め,$r$を$a$を用いて表せ.
(3)曲線$C$,直線$m$,および$x$軸によって囲まれる部分の面積を$S(a)$とする.$S(a)$を$a$を用いて表せ.
(4)$\triangle \mathrm{PQH}$の面積を$T(a)$とする.極限値$\displaystyle \lim_{a \to 0} \frac{S(a)}{T(a)}$を求めよ.
宇都宮大学 国立 宇都宮大学 2016年 第5問
座標平面上の曲線$\displaystyle C:y=\sin \pi x \left( 0<x<\frac{1}{2} \right)$の上に点$\mathrm{P}(a,\ \sin \pi a)$をとる.点$\mathrm{P}$における$C$の接線と法線をそれぞれ$\ell$,$m$とする.$\ell$と$y$軸の交点を$\mathrm{Q}(0,\ q)$,$m$と$x$軸の交点を$\mathrm{R}(r,\ 0)$とし,点$\mathrm{P}$から$y$軸に下ろした垂線の足を$\mathrm{H}$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求め,$q$を$a$を用いて表せ.
(2)法線$m$の方程式を求め,$r$を$a$を用いて表せ.
(3)曲線$C$,直線$m$,および$x$軸によって囲まれる部分の面積を$S(a)$とする.$S(a)$を$a$を用いて表せ.
(4)$\triangle \mathrm{PQH}$の面積を$T(a)$とする.極限値$\displaystyle \lim_{a \to 0} \frac{S(a)}{T(a)}$を求めよ.
山梨大学 国立 山梨大学 2016年 第3問
関数$f(x)=x \sqrt{4-x^2}$に対し,曲線$y=f(x)$を$C$とする.

(1)$f(x)$の増減を調べよ.ただし,$f(x)$の第$2$次導関数を調べる必要はない.
(2)$C$上の点$(1,\ \sqrt{3})$における接線$\ell$の方程式を求めよ.
(3)$C$の$0 \leqq x \leqq \sqrt{2}$の部分,直線$x=\sqrt{2}$および$x$軸で囲まれた図形の面積$S$を求めよ.
(4)$C$と$x$軸の$x \geqq 0$の部分で囲まれた図形を$D$とする.$D$を$y$軸の周りに$1$回転させてできる回転体の体積$V$を求めよ.
山梨大学 国立 山梨大学 2016年 第4問
$y=e^{-\pi x} \sin (\pi x)$で定められた曲線を$C$とする.

(1)$0 \leqq x \leqq 2$の範囲で$C$の概形をかけ.ただし,凹凸を調べる必要はない.
(2)$n$を自然数とする.$C$の$n-1 \leqq x \leqq n$の部分と$x$軸で囲まれた図形の面積$S_n$を求めよ.
(3)$(2)$の$S_n$について,$\displaystyle \sum_{n=1}^\infty S_n$の値を求めよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。