タグ「面積」の検索結果

12ページ目:全2409問中111問~120問を表示)
琉球大学 国立 琉球大学 2016年 第2問
座標平面上の原点$\mathrm{O}$,$\displaystyle \mathrm{P} \left( \frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$,$\displaystyle \mathrm{Q} \left( -\frac{\sqrt{3}}{2},\ \frac{1}{2} \right)$の$3$点を通る放物線$y=ax^2+bx+c$を$C_1$とし,原点$\mathrm{O}$を中心とする半径$1$の円を$C_2$とする.次の問いに答えよ.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$C_1$と線分$\mathrm{PQ}$で囲まれた図形の面積を求めよ.
(3)放物線$C_1$と円$C_2$で囲まれた図形のうち,放物線$C_1$の上側の部分の面積を求めよ.
鹿児島大学 国立 鹿児島大学 2016年 第6問
関数$f(x)=(\log x)^2-\log x (x>0)$を考える.次の各問いに答えよ.

(1)$f(x)=0$を満たす$x$をすべて求めよ.
(2)導関数$f^\prime(x)$および$2$次導関数$f^{\prime\prime}(x)$をそれぞれ求めよ.また関数$y=f(x)$のグラフの概形を描け.ただし関数$y=f(x)$の増減,凹凸,極限$\displaystyle \lim_{x \to 0}f(x)$,$\displaystyle \lim_{x \to \infty}f(x)$を明示すること.
(3)曲線$y=f(x)$と$x$軸で囲まれた部分の面積を求めよ.
九州工業大学 国立 九州工業大学 2016年 第3問
$a<0$,$b$を実数とする.楕円$C:x^2+4y^2=4$と直線$\ell:y=ax+b$が異なる$2$個の共有点$\mathrm{P}(x_1,\ y_1)$,$\mathrm{Q}(x_2,\ y_2) (x_1<x_2)$を持つとし,$\ell$に平行な直線$m$が第$1$象限の点$\mathrm{A}$において$C$と接しているとする.次に答えよ.

(1)$b$の値の範囲を$a$を用いて表せ.
(2)直線$m$の方程式を$a$を用いて表せ.
(3)$x_2-x_1$を$a,\ b$を用いて表せ.
(4)三角形$\mathrm{APQ}$の面積$S$を$a,\ b$を用いて表せ.
(5)$b$が$(1)$で求めた範囲を動くとき,$(4)$で求めた$S$の最大値を求めよ.
長崎大学 国立 長崎大学 2016年 第1問
半径$1$の円に内接する正十二角形$D$がある.その面積を$S$とする.$D$の各辺の中点を順に結んで正十二角形$D_1$をつくる.さらに,$D_1$の各辺の中点を結んで正十二角形$D_2$をつくる.このように,$D_{n−1}$の各辺の中点を順に結んで正十二角形$D_n$をつくる($n \geqq 2$).$D_n$の面積を$S_n$とする.以下の問いに答えよ.

(1)$S$と$S_1$を求めよ.
(2)$S_n$を$n$の式で表せ($n \geqq 1$).
(3)$\displaystyle S_n \leqq \frac{1}{2}S$となる最小の整数$n$を求めよ.ただし,
\[ 1.89<\log_2(2+\sqrt{3})<1.9 \]
である.
九州工業大学 国立 九州工業大学 2016年 第4問
点$\mathrm{A}(1,\ 0)$および点$\displaystyle \mathrm{P}(\sqrt{3} \cos \theta,\ \sqrt{3} \sin \theta) \left( 0<\theta<\frac{\pi}{4} \right)$がある.$x$軸に関して点$\mathrm{P}$と対称な点を$\mathrm{Q}$とし,$2$点$\mathrm{P}$,$\mathrm{A}$を通る直線を$\ell$,$2$点$\mathrm{O}$,$\mathrm{Q}$を通る直線を$m$とする.次に答えよ.ただし,$\mathrm{O}$は原点を表す.

(1)$\sqrt{3} \cos \theta>1$を示せ.
(2)直線$\ell$の方程式と直線$m$の方程式を$\theta$を用いて表せ.
(3)直線$\ell$と直線$m$の交点$\mathrm{R}$の座標を$\theta$を用いて表せ.
(4)三角形$\mathrm{PAQ}$の面積を$S$とする.$\theta$が変化するとき,$S$の最大値とそのときの$\theta$の値を求めよ.
(5)$\theta$が$(4)$で求めた値をとるとき,$2$直線$\ell,\ m$および曲線$x^2+y^2=3 (x \geqq \sqrt{3} \cos \theta)$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第2問
$1$辺の長さが$2$の立方体$\mathrm{ABCD}$-$\mathrm{EFGH}$がある.下の図$1$のように,$2$辺$\mathrm{BC}$,$\mathrm{CD}$上に,$\mathrm{BS}=\mathrm{CT}=x (0 \leqq x \leqq 2)$を満たす点$\mathrm{S}$,$\mathrm{T}$をとる.このとき,三角形$\mathrm{EST}$の面積の最大値と最小値を求めたい.以下の問いに答えよ.
(図は省略)

(1)上の図$2$を参考にして,三角形$\mathrm{OPQ}$において$\overrightarrow{\mathrm{OP}}=\overrightarrow{p}$,$\overrightarrow{\mathrm{OQ}}=\overrightarrow{q}$とおくとき,三角形$\mathrm{OPQ}$の面積は
\[ \frac{1}{2} \sqrt{|\overrightarrow{p|}^2 |\overrightarrow{q|}^2-(\overrightarrow{p} \cdot \overrightarrow{q})^2} \]
と表されることを証明せよ.
(2)$\overrightarrow{\mathrm{EF}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{EH}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{EA}}=\overrightarrow{c}$とおく.立方体の$1$辺の長さが$2$であることに注意して,$\overrightarrow{\mathrm{ES}}$,$\overrightarrow{\mathrm{ET}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$x$を用いて表せ.また,$|\overrightarrow{\mathrm{ES|}}^2$,$|\overrightarrow{\mathrm{ET|}}^2$を,それぞれ$x$の式として表せ.さらに,$\overrightarrow{\mathrm{ES}}$と$\overrightarrow{\mathrm{ET}}$の内積$\overrightarrow{\mathrm{ES}} \cdot \overrightarrow{\mathrm{ET}}$は,$x$によらない一定の値になることを示せ.
(3)上の$(1)$を利用して三角形$\mathrm{EST}$の面積$f(x)$を求めよ.
(4)$0 \leqq x \leqq 2$の範囲で,$f(x)$の最大値と最小値を求めよ.また,そのときの$x$の値も答えよ.
長崎大学 国立 長崎大学 2016年 第2問
空間において,$3$点$\mathrm{A}(5,\ 0,\ 1)$,$\mathrm{B}(4,\ 2,\ 0)$,$\mathrm{C}(0,\ 1,\ 5)$を頂点とする三角形$\mathrm{ABC}$がある.以下の問いに答えよ.

(1)線分$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$の長さを求めよ.
(2)三角形$\mathrm{ABC}$の面積$S$を求めよ.
(3)原点$\mathrm{O}(0,\ 0,\ 0)$から平面$\mathrm{ABC}$に垂線を下し,平面$\mathrm{ABC}$との交点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{AH}}=\ell \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AC}}$とおくとき,実数$\ell,\ m$の値を求めよ.
(4) 直線$\mathrm{AH}$と直線$\mathrm{BC}$の交点を$\mathrm{M}$とする.$\overrightarrow{\mathrm{AH}}=k \overrightarrow{\mathrm{AM}}$とおくとき,実数$k$の値と三角形$\mathrm{HBC}$の面積$T$を求めよ.
(5)原点$\mathrm{O}$を頂点,四角形$\mathrm{ABHC}$を底面とする四角錐$\mathrm{O}$-$\mathrm{ABHC}$の体積$V$を求めよ.
長崎大学 国立 長崎大学 2016年 第1問
半径$1$の円に内接する正十二角形$D$がある.その面積を$S$とする.$D$の各辺の中点を順に結んで正十二角形$D_1$をつくる.さらに,$D_1$の各辺の中点を結んで正十二角形$D_2$をつくる.このように,$D_{n−1}$の各辺の中点を順に結んで正十二角形$D_n$をつくる($n \geqq 2$).$D_n$の面積を$S_n$とする.以下の問いに答えよ.

(1)$S$と$S_1$を求めよ.
(2)$S_n$を$n$の式で表せ($n \geqq 1$).
(3)$\displaystyle S_n \leqq \frac{1}{2}S$となる最小の整数$n$を求めよ.ただし,
\[ 1.89<\log_2(2+\sqrt{3})<1.9 \]
である.
秋田大学 国立 秋田大学 2016年 第1問
$f(x)=\log_2 (x+1)+\log_2 (x-2)-2$,$g(x)=|x(x-2)|$とする.次の問いに答えよ.

(1)方程式$f(x)=0$を解け.
(2)関数$y=g(x)$のグラフの概形をかけ.
(3)曲線$y=f(x)$と$x$軸との交点の座標を$(a,\ 0)$とする.このとき,曲線$y=g(x) (-1 \leqq x \leqq a)$と$x$軸,および$2$直線$x=-1$,$x=a$で囲まれた図形の面積を求めよ.
秋田大学 国立 秋田大学 2016年 第2問
$a$は実数とする.座標平面上に$3$点$\mathrm{A}(a^3+a-4,\ 5)$,$\mathrm{B}(2a,\ 3)$,$\mathrm{C}(a+1,\ 2)$がある.次の問いに答えよ.

(1)$a=0$のとき,ベクトル$\overrightarrow{\mathrm{AB}}$に垂直で,大きさが$1$のベクトルを求めよ.
(2)$a=0$のとき,$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が一直線上に並ぶ場合があるか調べよ.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。