タグ「面積」の検索結果

11ページ目:全2409問中101問~110問を表示)
香川大学 国立 香川大学 2016年 第5問
$a>0$とし,座標平面上の点$\mathrm{A}(a,\ 0)$から曲線$\displaystyle C:y=\frac{1}{x}$に引いた接線を$\ell$とする.このとき,次の問に答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)曲線$C$と接線$\ell$,および直線$x=a$で囲まれた部分の面積を求めよ.
佐賀大学 国立 佐賀大学 2016年 第3問
$\mathrm{O}$を原点とする座標平面上に$2$点$\mathrm{A}(4,\ 0)$,$\mathrm{P}(t,\ 0)$をとる.ただし,$0<t<4$とする.さらに放物線$C:y=-x^2+7x$上に$2$点$\mathrm{B}(4,\ 12)$,$\mathrm{Q}(t,\ -t^2+7t)$をとる.$\triangle \mathrm{APB}$の面積を$f(t)$とし,放物線$C$,線分$\mathrm{PQ}$,線分$\mathrm{OP}$によって囲まれた図形の面積を$g(t)$とする.このとき,次の問に答えよ.

(1)$f(t)$を$t$を用いて表せ.
(2)$g(t)$を$t$を用いて表せ.
(3)$h(t)=f(t)+g(t)$とおく.$0<t<4$における$h(t)$の最小値とそのときの$t$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
空間に$5$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(b,\ c,\ 0)$,$\mathrm{C}(d,\ e,\ 4)$,$\mathrm{T}(d,\ e,\ t)$があり,このうちの$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が正四面体の頂点になっているとする.ただし,$a,\ b,\ c,\ d,\ e$はいずれも正の実数で,$0<t<4$とする.

(1)$a,\ b,\ c,\ d,\ e$の値を求めよ.
(2)$\cos \angle \mathrm{OTA}$を$t$を用いて表せ.
(3)$\angle \mathrm{OTC}=\angle \mathrm{OTA}$となるときの$t$の値を求めよ.また,そのときの$\cos \angle \mathrm{OTA}$の値と三角形$\mathrm{OTA}$の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
空間に$5$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(b,\ c,\ 0)$,$\mathrm{C}(d,\ e,\ 4)$,$\mathrm{T}(d,\ e,\ t)$があり,このうちの$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が正四面体の頂点になっているとする.ただし,$a,\ b,\ c,\ d,\ e$はいずれも正の実数で,$0<t<4$とする.

(1)$a,\ b,\ c,\ d,\ e$の値を求めよ.
(2)$\cos \angle \mathrm{OTA}$を$t$を用いて表せ.
(3)$\angle \mathrm{OTC}=\angle \mathrm{OTA}$となるときの$t$の値を求めよ.また,そのときの$\cos \angle \mathrm{OTA}$の値と三角形$\mathrm{OTA}$の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$f(x)=x^3+2x^2-x-2$とし,$\mathrm{O}$を原点とする座標平面上の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(t,\ f(t))$における$C$の接線を$\ell$とおく.$\ell$が$2$直線$x=-1$,$x=1$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)接線$\ell$の方程式を求めよ.
(2)$t$が$-1<t<1$の範囲を動くとき,三角形$\mathrm{OQR}$の面積を$S(t)$とおく.$S(t)$を$t$を用いて表せ.
(3)$(2)$の$S(t)$の最小値,およびそのときの$t$の値を求めよ.
(4)$t<1$のとき,$\ell$と$C$が$t<s<1$を満たす点$\mathrm{U}(s,\ f(s))$で交わるような$t$の範囲を求めよ.またそのとき,線分$\mathrm{PU}$と$C$とで囲まれる部分の面積と,線分$\mathrm{UR}$と$C$と直線$x=1$とで囲まれる部分の面積が等しくなるような$t$の値を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
関数$f(x)=x^2e^x (x>-3)$を考える.


(1)関数$y=f(x)$の極値を調べて,そのグラフをかけ.

(2)曲線$y=f(x)$上の点$(1,\ e)$における接線の方程式を求めよ.

(3)定積分$\displaystyle \int_0^1 xe^x \, dx$を求めよ.

(4)曲線$y=f(x)$と$(2)$で求めた接線と$x$軸とで囲まれた部分の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
空間に$5$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(a,\ 0,\ 0)$,$\mathrm{B}(b,\ c,\ 0)$,$\mathrm{C}(d,\ e,\ 4)$,$\mathrm{T}(d,\ e,\ t)$があり,このうちの$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が正四面体の頂点になっているとする.ただし,$a,\ b,\ c,\ d,\ e$はいずれも正の実数で,$0<t<4$とする.

(1)$a,\ b,\ c,\ d,\ e$の値を求めよ.
(2)$\cos \angle \mathrm{OTA}$を$t$を用いて表せ.
(3)$\angle \mathrm{OTC}=\angle \mathrm{OTA}$となるときの$t$の値を求めよ.また,そのときの$\cos \angle \mathrm{OTA}$の値と三角形$\mathrm{OTA}$の面積を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$f(x)=x^3+2x^2-x-2$とし,$\mathrm{O}$を原点とする座標平面上の曲線$y=f(x)$を$C$とする.$C$上の点$\mathrm{P}(t,\ f(t))$における$C$の接線を$\ell$とおく.$\ell$が$2$直線$x=-1$,$x=1$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)接線$\ell$の方程式を求めよ.
(2)$t$が$-1<t<1$の範囲を動くとき,三角形$\mathrm{OQR}$の面積を$S(t)$とおく.$S(t)$を$t$を用いて表せ.
(3)$(2)$の$S(t)$の最小値,およびそのときの$t$の値を求めよ.
大分大学 国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.

(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
大分大学 国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.

(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
スポンサーリンク

「面積」とは・・・

 まだこのタグの説明は執筆されていません。