タグ「集まり」の検索結果

1ページ目:全5問中1問~10問を表示)
京都教育大学 国立 京都教育大学 2015年 第6問
区間$[0,\ 1]$を$n$等分して得た分点を
\[ 0=x_0<x_1<\cdots <x_n=1 \]
とならべる.すなわち,
\[ x_k=\frac{k}{n} \quad (k=0,\ 1,\ \cdots,\ n) \]
とおく.$f(x)=x^2+1 (0 \leqq x \leqq 1)$に対して,$4$点$(x_{k-1},\ 0)$,$(x_k,\ 0)$,$(x_k,\ f(x_k))$,$(x_{k-1},\ f(x_{k-1}))$を頂点とする台形$S_k (k=1,\ 2,\ \cdots,\ n)$の$k=1$から$k=n$までの集まりを$R_n$とおく.

(1)図形$R_4$を図示せよ.
(2)図形$R_n$の面積を$r_n$とするとき,$\displaystyle \lim_{n \to \infty}r_n=\frac{4}{3}$であることを証明せよ.
神奈川大学 私立 神奈川大学 2015年 第1問
次の空欄$(\mathrm{a})$~$(\mathrm{g})$を適当に補え.

(1)不等式$|3x-5|<2x+1$を満たす$x$の値の範囲は$[$(\mathrm{a])$}$である.
(2)$t>0$とする.$2$つのベクトル$\overrightarrow{a}=(t+3,\ t-1)$と$\overrightarrow{b}=(-1,\ t)$が垂直であるとき,$t=[$(\mathrm{b])$}$である.
(3)白い玉が$3$個,赤い玉が$2$個入っている袋がある.袋から玉を$1$つ取り出し色を確かめ袋に戻す操作を$3$回行う.このとき,$2$回以上白い玉が出る確率は$[$(\mathrm{c])$}$である.

(4)$\displaystyle \lim_{h \to 0} \frac{e^{2h+2}-e^2}{h}=[$(\mathrm{d])$}$である.

(5)$8$つの数の集まり$\{-2,\ -1,\ 0,\ 1,\ 2,\ 3,\ 4,\ 5\}$を$2$組に分け,それぞれの組に属する数の和を考える.たとえば,
$\{-1,\ 0,\ 2,\ 4,\ 5\} \text{と} \{-2,\ 1,\ 3\}$
という組み分けについては,$10$と$2$である.このとき,
「どんな組み分けについても,少なくとも一方の和は$a$以上である」
という主張が成立するような数$a$のうち最大のものは$[$(\mathrm{e])$}$である.

(6)$\displaystyle \int_1^x \log t \, dt=[$(\mathrm{f])$}$であるので,$\displaystyle f(x)=\int_1^x (x-1) \log t \, dt$のとき,$f^\prime(x)=[$(\mathrm{g])$}$である.
東北医科薬科大学 私立 東北医科薬科大学 2012年 第3問
点$\mathrm{A}_1$,$\mathrm{A}_2$,$\mathrm{A}_3$,$\mathrm{A}_4$,$\mathrm{A}_5$と点$\mathrm{B}_1$,$\mathrm{B}_2$,$\mathrm{B}_3$,$\mathrm{B}_4$,$\mathrm{B}_5$が次のように並んでいる.
\[ \begin{array}{ccccc}
\mathrm{A}_1 & \mathrm{A}_2 & \mathrm{A}_3 & \mathrm{A}_4 & \mathrm{A}_5 \\
\bullet & \bullet & \bullet & \bullet & \bullet \\ \\
\bullet & \bullet & \bullet & \bullet & \bullet \\
\mathrm{B}_1 & \mathrm{B}_2 & \mathrm{B}_3 & \mathrm{B}_4 & \mathrm{B}_5
\end{array} \]
各点$\mathrm{A}_i (1 \leqq i \leqq 5)$に対し,それぞれすべて異なる点$\mathrm{B}_j (1 \leqq j \leqq 5)$を$1$つずつ選んで線分で結ぶ.こうしてできた$5$本の線分を次のような集まりに分ける分け方を考える.

(i) 他の線分と交わらない線分はその線分だけで$1$つの集まりとする.
(ii) 他の線分と交わる線分は,その線分と交わる線分,及び,これらのいずれかに交わる線分を繰り返しすべて集めて$1$つの集まりとする.

例えば,次は集まりの個数が$3$個となる分け方である.
(図は省略)
また,次は集まりの個数が$2$個となる分け方である.
(図は省略)
このとき,次の問に答えなさい.

(1)集まりの個数が$5$個となる分け方は全部で$[ア]$通りである.
(2)集まりの個数が$4$個となる分け方は全部で$[イ]$通りである.
(3)集まりの個数が$3$個となる分け方は全部で$[ウエ]$通りである.
(4)集まりの個数が$2$個となる分け方は全部で$[オカ]$通りである.
鹿児島大学 国立 鹿児島大学 2010年 第5問
2次の正方行列$A,\ B$について,次の各問いに答えよ.

(1)行列$A=\left( \begin{array}{cc}
\displaystyle\frac{4}{5} & b \\
c & d
\end{array} \right)$は原点のまわりの回転移動を表し,$b>0$である.行列$A$を求めよ.
(2)行列$B$の表す移動(1次変換)に続いて行列$A$の表す移動を行うことで得られる合成移動(合成変換)は$y$軸に関する対称移動になる.行列$B$を求めよ.
(3)$B \left( \begin{array}{c}
x \\
y
\end{array} \right)=\left( \begin{array}{c}
x \\
y
\end{array} \right)$を満たす点$(x,\ y)$の集まりは直線となることを示せ.また,その直線を表す式を求めよ.
(4)$B \left( \begin{array}{c}
z \\
w
\end{array} \right)=\left( \begin{array}{c}
2 \\
1
\end{array} \right)$を満たす列ベクトル$\left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.また,この列ベクトルと自然数$n$に対し,$B^n \left( \begin{array}{c}
z \\
w
\end{array} \right)$を求めよ.
滋賀大学 国立 滋賀大学 2010年 第3問
数の集まり$\{1\},\ \{1,\ 2\},\ \{1,\ 2,\ 3\},\ \{1,\ 2,\ 3,\ 4\},\ \cdots$について,次のように並べてできる数列
\[ 1,\ 1,\ 2,\ 1,\ 2,\ 3,\ 1,\ 2,\ 3,\ 4,\ \cdots \]
の第$n$項を$a_n$とする.このとき,次の問いに答えよ.

(1)$100$以下の自然数$k$について,$a_k-a_{k+1} \geqq 9$となる$k$の最小値と最大値を求めよ.
(2)$a_{225}$を求めよ.
(3)$\displaystyle \sum_{k=1}^{225}a_k$を求めよ.
スポンサーリンク

「集まり」とは・・・

 まだこのタグの説明は執筆されていません。