タグ「関数」の検索結果

62ページ目:全2213問中611問~620問を表示)
京都産業大学 私立 京都産業大学 2015年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)$8x^3-27y^3$を因数分解すると$[ア]$である.
(2)関数$f(x)=x^2-4x+5 (-1 \leqq x \leqq 3)$の最大値は$[イ]$,最小値は$[ウ]$である.
(3)$\displaystyle \frac{3+i}{1-2i}$を$a+bi$の形にすると,$a=[エ]$,$b=[オ]$である.ただし,$a,\ b$は実数とし,$i$は虚数単位とする.
(4)不等式$\log_3 (1-x) \leqq \log_{\frac{1}{3}} (2x+1)$を満たす$x$の値の範囲は$[カ]$である.
(5)日曜日から土曜日までのうち$3$つの曜日を選び,毎週それらの曜日に出勤することとする.出勤する曜日の選び方は全部で$[キ]$通りある.また,$2$日は連続して出勤するが,$3$日は連続して出勤しないような曜日の選び方は$[ク]$通りある.
京都産業大学 私立 京都産業大学 2015年 第3問
$e$を自然対数の底とする.次の問いに答えよ.

(1)$2$つの関数$f(x)=e^{-x} \sin x$と$g(x)=e^{-x} \cos x$を微分せよ.
(2)定積分$\displaystyle \int_0^\pi e^{-x} \sin x \, dx$の値を求めよ.
(3)$k$を$0$以上の整数とする.定積分$\displaystyle \int_{k \pi}^{(k+1) \pi} e^{-x} \sin x \, dx$の値を$k$を用いて表せ.
(4)$\displaystyle \lim_{n \to \infty} \int_0^{n \pi} e^{-x} \sin x \, dx$の値を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2015年 第4問
以下の問いに答えなさい.

(1)次の定積分を求めなさい.ただし,$a$は正の定数とする.
\[ 1) \quad \int_0^a te^{-t} \, dt \qquad\qquad 2) \quad \int_0^a t^2 e^{-t} \, dt \]
(2)以下の空欄$[$1$]$~$[$5$]$に適切な値を答えなさい.

$x \geqq 0$で定義された関数$f(x)=(\sqrt{x}-1)e^{-\sqrt{x}}$に対して,$y=f(x)$の表す曲線を$C$とおく.$C$は$x=[$1$]$で極大値$[$2$]$をとる.$C$上の点$(t,\ f(t))$での接線が原点を通るのは$t=[$3$]$のときである.このときの接線を$\ell$とおくと,$\ell$の傾きは$[$4$]$となる.また,$C$,$\ell$と$y$軸で囲まれた部分の面積は$[$5$]$である.
山口東京理科大学 私立 山口東京理科大学 2015年 第8問
関数$f(x)=x^3+ax^2+bx-3$が$x=-2$で極大値,$x=4$で極小値をとるとき,定数$a$の値は$-[ネ]$,定数$b$の値は$-[ノ][ハ]$となる.また,極大値は$[ヒ][フ]$,極小値は$-[ヘ][ホ]$である.
昭和薬科大学 私立 昭和薬科大学 2015年 第2問
関数$\displaystyle f(x)=\frac{1}{6} \int_0^3 x^2f(t) \, dt-\frac{1}{12} \int_{-3}^0 xf(t) \, dt-2$に対して,$2$つの曲線$C_1:y=x^2+1$,$C_2:y=f(x)$を考える.

(1)$f(x)=px^2+qx-2$とすると,$p=[ナ][ニ]$,$q=[ヌ]$である.
(2)点$(a,\ f(a))$(ただし,$a>1$とする)における曲線$C_2$の接線$\ell$と曲線$C_1$との異なる$2$つの交点を結ぶ線分の中点が$(-1,\ b)$のとき,$b=[ネ]$であり,$\ell$の方程式は$y=[ノ][ハ]x+[ヒ]$である.
(3)$(2)$で求めた接線$\ell$と曲線$C_2$および$y$軸で囲まれた図形の面積は$\displaystyle \frac{[フ]}{[ヘ]}$である.
広島女学院大学 私立 広島女学院大学 2015年 第2問
次の問いに答えよ.

(1)関数$y=ax+b (-1 \leqq x \leqq 2)$の値域が$1 \leqq y \leqq 7$となるような定数$a,\ b$の値を求めよ.ただし,$a>0$とする.
(2)次の$2$次関数の頂点の座標を求めよ.

\mon[$①$] $y=2x^2+12x+16$
\mon[$②$] $y=-2x^2+4x+3$

(3)$2$次方程式$x^2-2mx+4m-3=0$が異なる$2$つの実数解を持たない定数$m$の範囲を求めよ.
崇城大学 私立 崇城大学 2015年 第2問
関数$f(x)=3x^2+5$のグラフ上の点$(-2,\ f(-2))$における接線を$\ell_1$とし,直線$x=k$(ただし,$k \neq -2$)を$\ell_2$とするとき,次の各問に答えよ.

(1)接線$\ell_1$の方程式を求めよ.
(2)関数$f(x)$のグラフと接線$\ell_1$,直線$\ell_2$で囲まれた図形の面積が$\displaystyle \frac{125}{8}$となるとき,定数$k$の値を求めよ.
崇城大学 私立 崇城大学 2015年 第2問
$k$を定数とする.関数$f(x)$は,条件$f^\prime(x)=12x^2-2x-2$,$f(0)=k$を満たしている.次の各問に答えよ.

(1)$f(x)$の極値を$k$を用いて表せ.
(2)方程式$f(x)=0$の異なる実数解の個数を,$k$の値によって分類せよ.
京都薬科大学 私立 京都薬科大学 2015年 第1問
次の$[ ]$にあてはまる数または式を記入せよ.

(1)$2$次関数$f(x)=ax^2+bx+2a^2$は,$x=-1$で最大値をとり,$f(1)=14$を満たす.このとき,$a=[ア]$,$b=[イ]$で,$f(x)$の最大値は$[ウ]$である.
(2)$1$つのさいころを$1$の目が出るまで投げ続ける.ただし,投げる回数は最大$100$回とする.このとき,ちょうど$n$回($n<100$)投げてやめる確率は$[エ]$で,投げる回数が$n$回以下($n<100$)でやめる確率は$[オ]$である.また,$1$の目が$2$回出るまで投げ続けるとき(最大$100$回),投げる回数が$n$回以下($n<100$)でやめる確率は$[カ]$である.
(3)平面上の$\triangle \mathrm{OAB}$において,$\mathrm{OA}=4$,$\mathrm{OB}=3$,$\displaystyle \cos \angle \mathrm{AOB}=\frac{2}{3}$が成立しているとする.このとき,$\mathrm{AB}=[キ]$である.また,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$と表し,$\displaystyle \overrightarrow{\mathrm{OC}}=\frac{5}{2} \overrightarrow{a}+2 \overrightarrow{b}$を満たす点$\mathrm{C}$をとれば,$\mathrm{AC}=[ク]$,$\cos \angle \mathrm{BAC}=[ケ]$が成立する.
(4)不等式$\sin 2\theta+\sin 4\theta>\sin 3\theta$を満たす$\theta$の範囲は$[コ]<\theta<[サ]$および$[シ]<\theta<[ス]$である.ただし,$0<\theta<\pi$とする.
(5)ある正の数$a$を底としたときの,$2$と$5$の対数の近似値がそれぞれ$\log_a 2=0.693$,$\log_a 5=1.609$であるとする.また,$\sqrt[4]{10}=1.778$とする.指数関数$y=pa^{-qx}$($p,\ q$は正の数)において,$x=1$のとき$y=10$,$x=5$のとき$y=1$となるならば,$p=[セ]$,$q=[ソ]$である.また,$y$がちょうど$p$の半分となるときの$x$の値は$[タ]$である.なお,解答は小数点以下$2$桁で示すこと(必要ならば小数第$3$位を四捨五入せよ).
京都薬科大学 私立 京都薬科大学 2015年 第4問
次の$[ ]$にあてはまる数または式を記入せよ.なお,$k>0$として,解答はすべて数あるいは$k$を用いた式で示すこと.

(1)$2$次関数$f(x)=-x^2+(k-1)x+k$を考える.放物線$y=f(x)$の頂点の座標は$([ア],\ [イ])$となり,この放物線上の点$(0,\ f(0))$における接線を$\ell$とすると,$\ell$の方程式は$y=([ウ])x+[エ]$となる.
(2)次に$2$次関数$g(x)=x^2+ax+b$($a,\ b$は定数)を考える.放物線$y=g(x)$が点$(k,\ 0)$において放物線$y=f(x)$と接線を共有するとき,$a,\ b$の値はそれぞれ$[オ]$,$[カ]$であり,$\ell$と放物線$y=g(x)$との交点の$x$座標はそれぞれ$[キ]$,$[ク]$となる(ただし$[キ]<[ク]$とする).
(3)さらに$\ell$と放物線$y=g(x)$とで囲まれた部分の面積を$S$とするとき,$S$を$k$で表すと$[ケ]$となる.また,$\ell$は$k=[コ]$のとき放物線$y=g(x)$と$x$軸上で交わり,そのときの$S$は$[サ]$となる.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。