タグ「関数」の検索結果

48ページ目:全2213問中471問~480問を表示)
秋田大学 国立 秋田大学 2015年 第3問
$f(x)=|1+2 \sin 2x|$とする.次の問いに答えよ.

(1)$0 \leqq x \leqq \pi$のとき,方程式$f(x)=0$を解け.
(2)$0 \leqq x \leqq \pi$における関数$y=f(x)$のグラフの概形をかけ.

(3)$\displaystyle \int_0^\pi f(x) \, dx$を求めよ.

(4)$\displaystyle \int_{\frac{11}{12}\pi}^x f(t) \, dt=3\pi+18 \sqrt{3}$となる$x$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第4問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
宇都宮大学 国立 宇都宮大学 2015年 第1問
袋の中に$5$個の玉が入っている.それらは,$0$と書かれた玉が$2$個,$1$と書かれた玉,$-1$と書かれた玉,$2$と書かれた玉がそれぞれ$1$個ずつである.この袋の中から$3$個の玉を取り出す.取り出した$3$個の玉に書かれた数字の和を$m$とする.次に,袋の中に残った$2$個の玉に書かれた数字の積を$n$とする.このように定義された$m$と$n$のもとで,$2$次関数
\[ f(x)=x^2-mx+n \]
を考える.このとき,次の問いに答えよ.

(1)$m$のとり得る値をすべて求めよ.
(2)$m$と$n$のとり得る組合せ$(m,\ n)$をすべて求めよ.
(3)$m$と$n$のとり得る組合せ$(m,\ n)$のすべてについて,それぞれが起こる確率を求めよ.
(4)不等式$f(x)>0$がすべての実数$x$について成り立つ確率を求めよ.
(5)方程式$f(x)=0$が異なる実数解$\alpha,\ \beta$をもち,同時に$\alpha<2$かつ$\beta<2$となる確率を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第1問
袋の中に$5$個の玉が入っている.それらは,$0$と書かれた玉が$2$個,$1$と書かれた玉,$-1$と書かれた玉,$2$と書かれた玉がそれぞれ$1$個ずつである.この袋の中から$3$個の玉を取り出す.取り出した$3$個の玉に書かれた数字の和を$m$とする.次に,袋の中に残った$2$個の玉に書かれた数字の積を$n$とする.このように定義された$m$と$n$のもとで,$2$次関数
\[ f(x)=x^2-mx+n \]
を考える.このとき,次の問いに答えよ.

(1)$m$のとり得る値をすべて求めよ.
(2)$m$と$n$のとり得る組合せ$(m,\ n)$をすべて求めよ.
(3)$m$と$n$のとり得る組合せ$(m,\ n)$のすべてについて,それぞれが起こる確率を求めよ.
(4)不等式$f(x)>0$がすべての実数$x$について成り立つ確率を求めよ.
(5)方程式$f(x)=0$が異なる実数解$\alpha,\ \beta$をもち,同時に$\alpha<2$かつ$\beta<2$となる確率を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$a>0$とし,関数$f(x)$を
\[ f(x)=-a \cos x+\frac{1}{2}a^2 \cos 2x \qquad (-\pi<x<\pi) \]
と定める.

(1)$f(x)$の最小値は,$a \leqq [ア]$のとき$[イ]$であり,$a \geqq [ア]$のとき$[ウ]$である.ただし,$[ア]$には数,$[イ]$と$[ウ]$には$a$の多項式を記入すること.
(2)曲線$y=f(x)$が$x$軸と接するのは$a=[エ]$のときである.
(3)$a=[エ]$とする.曲線$y=f(x)$と$x$軸で囲まれた部分の面積は$[オ]$であり,その部分を$x$軸の周りに$1$回転させてできる立体の体積は$[カ]$である.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$0<\theta _n<1 \ (n=1,\ 2,\ 3,\ \cdots)$となる数列$\{\theta_n\}$を用いて,閉区間$[0,\ 1]$から始めて,以下のようにしていくつかの閉区間を残す操作を繰り返す.ただし,$a<b$とするとき,開区間$(a,\ b)$の長さは閉区間$[a,\ b]$の長さと等しく$b-a$である.

$1$回目の操作では,閉区間$\displaystyle \left[ 0,\ \frac{1-\theta_1}{2} \right]$と$\displaystyle \left[ \frac{1+\theta_1}{2},\ 1 \right]$を残す.残った閉区間の個数を$k_1$,各閉区間の長さを$r_1$とおき,$s_1$を$s_1=k_1r_1$と定める.$k_1=2$,$\displaystyle r_1=\frac{1-\theta_1}{2}$,$s_1=1-\theta_1$である.
$n+1$回目の操作では,$n$回目の操作を終えて残った$k_n$個の長さ$r_n$の各閉区間から長さ$\theta_{n+1}r_n$の閉区間を取り除き,長さの等しい閉区間を$2$個ずつ残す.こうして残った閉区間の個数を$k_{n+1}$,各閉区間の長さを$r_{n+1}$とおき,$s_{n+1}$を$s_{n+1}=k_{n+1}r_{n+1}$と定める.
(1)$\displaystyle \lim_{n \to \infty} r_n=[サ]$である.
(2)$\displaystyle \theta_n=\frac{2}{(n+1)(n+2)} (n=1,\ 2,\ 3,\ \cdots)$のとき,$\displaystyle \lim_{n \to \infty}s_n=[シ]$である.
(3)$0<\theta<1$とし,$\theta_n=\theta (n=1,\ 2,\ 3,\ \cdots)$とする.$n=1,\ 2,\ 3,\ \cdots$に対して,閉区間$[0,\ 1]$を定義域とする連続関数$f_n(x)$と実数$a_n$が次の条件を満たすとする.

\mon[条件:] $f_n(0)=0$で$f_n(1)=1$である.関数$f_n(x)$は,$n$回目までの操作で取り除いた各開区間において微分可能で${f_n}^\prime(x)=0$となり,$n$回目の操作を終えて残った各閉区間から両端を除いた開区間において微分可能で${f_n}^\prime(x)=a_n$となる.

このとき$a_n$を$\theta$と$n$を用いて表すと$a_n=[ス]$となる.関数$y=f_n(x) (0 \leqq x \leqq 1)$のグラフは折れ線になり,その長さを$l_n$とおくと,$\displaystyle \lim_{n \to \infty} l_n=[セ]$となる.
慶應義塾大学 私立 慶應義塾大学 2015年 第4問
関数$y=\sin \theta \cos \theta-\sin \theta+\cos \theta$について考える.以下に答えなさい.

(1)$t=\cos \theta-\sin \theta$とおくとき,$y$を$t$の式で表しなさい.
(2)$\theta$が$0 \leqq \theta \leqq \pi$の範囲を動くとき,$t$の動く範囲を求めなさい.
(3)$\theta$が$0 \leqq \theta \leqq \pi$の範囲を動くとき,$y$の最大値,最小値と,それらを与える$\theta$の値をそれぞれ求めなさい.
慶應義塾大学 私立 慶應義塾大学 2015年 第5問
$f(x)=(x-1) |x-3|-4x+12$とする.また,曲線$y=f(x)$上の点$\mathrm{P}(1,\ f(1))$における接線を$\ell$とする.以下に答えなさい.

(1)$y=f(x)$のグラフをかきなさい.
(2)直線$\ell$の方程式を求めなさい.
(3)曲線$y=f(x)$と直線$\ell$の点$\mathrm{P}$以外の共有点$\mathrm{Q}$の座標を求めなさい.
(4)曲線$y=f(x)$と直線$\ell$で囲まれた図形の面積$S$を求めなさい.
早稲田大学 私立 早稲田大学 2015年 第1問
関数$\displaystyle f(x)=\frac{x}{\sqrt{1+x^2}}$について,次の問に答えよ.

(1)$y=f(x)$のグラフの概形を描け.
(2)$t>0$を媒介変数として,$x=f^\prime(t)$,$y=f(t)-tf^\prime(t)$で表される曲線の概形を描け.
(3)$(2)$の曲線の接線が$x$軸と$y$軸によって切り取られてできる線分の長さは一定であることを示せ.
早稲田大学 私立 早稲田大学 2015年 第3問
$a,\ b$を実数とし,
\[ f(x)=x^2+ax+1,\quad g(x)=-x^2-bx+1 \]
とおく.次の問に答えよ.

(1)方程式$f(x)=0$と$g(x)=0$が共通の解を持つための$a,\ b$の条件を求めよ.
(2)$a \geqq 0,\ b \geqq 0$の範囲で,$(1)$で求めた条件をみたしながら$a,\ b$を動かす.$f(x)=0$と$g(x)=0$の共通解を$\alpha$とし,$y=f(x)$のグラフ上の点$(\alpha,\ 0)$における接線を$\ell$とする.このとき,$y=g(x)$のグラフと$\ell$で囲まれる部分の面積$S$の最小値を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。