タグ「関数」の検索結果

47ページ目:全2213問中461問~470問を表示)
福島大学 国立 福島大学 2015年 第5問
次の問いに答えなさい.

(1)関数$f(x)$が
\[ f(x)=x^2+\int_0^\pi f(t) \sin t \, dt \]
をみたすとき,$f(x)$を求めなさい.
(2)等式
\[ f(x)=x^2+\int_0^{\frac{\pi}{2}} f(t) \sin t \, dt \]
をみたす関数$f(x)$は存在しないことを示しなさい.
宇都宮大学 国立 宇都宮大学 2015年 第5問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
宇都宮大学 国立 宇都宮大学 2015年 第5問
$m \geqq 1$を整数とする.関数$f(x)=(\pi-x) \sin mx (0 \leqq x \leqq \pi)$について,次の問いに答えよ.

(1)$f(x)=0$となるすべての$x (0 \leqq x \leqq \pi)$の値を,小さい順に$x_1,\ x_2,\ \cdots,\ x_N$で表す.このとき,$N$を$m$の式で表し,$x_k (k=1,\ 2,\ \cdots,\ N)$を$k$と$m$の式で表せ.
(2)$(1)$で定めた$x_k$と$x_{k+1} (k=1,\ 2,\ \cdots,\ N-1)$に対し,曲線$y=f(x) (x_k \leqq x \leqq x_{k+1})$と$x$軸で囲まれた図形の面積を$S_k$とするとき,$S_k$を$k$と$m$の式で表せ.
(3)$(2)$で求めた面積$S_k$の$k=1$から$N-1$までの和$\displaystyle \sum_{k=1}^{N-1} S_k$を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第1問
袋の中に$5$個の玉が入っている.それらは,$0$と書かれた玉が$2$個,$1$と書かれた玉,$-1$と書かれた玉,$2$と書かれた玉がそれぞれ$1$個ずつである.この袋の中から$3$個の玉を取り出す.取り出した$3$個の玉に書かれた数字の和を$m$とする.次に,袋の中に残った$2$個の玉に書かれた数字の積を$n$とする.このように定義された$m$と$n$のもとで,$2$次関数
\[ f(x)=x^2-mx+n \]
を考える.このとき,次の問いに答えよ.

(1)$m$のとり得る値をすべて求めよ.
(2)$m$と$n$のとり得る組合せ$(m,\ n)$をすべて求めよ.
(3)$m$と$n$のとり得る組合せ$(m,\ n)$のすべてについて,それぞれが起こる確率を求めよ.
(4)不等式$f(x)>0$がすべての実数$x$について成り立つ確率を求めよ.
(5)方程式$f(x)=0$が異なる実数解$\alpha,\ \beta$をもち,同時に$\alpha<2$かつ$\beta<2$となる確率を求めよ.
京都教育大学 国立 京都教育大学 2015年 第1問
$f(x)$は$x$の整式で,$f(x)$を$(x-1)(x-2)$で割った余りは$2x-1$,$f(x)$を$(x-2)(x-3)$で割った余りは$x+c$であるとする.ただし,$c$は定数である.

(1)$f(x)$を$x-2$で割った余りを求めよ.
(2)$c$を求めよ.
(3)$f(x)$を$(x-1)(x-2)(x-3)$で割った余りを求めよ.
京都教育大学 国立 京都教育大学 2015年 第5問
$a$は実数であるとする.$x$の関数$f(x)$を,
\[ f(x)=\frac{1}{3}x^3-\frac{a-1}{2}x^2-ax+2 \]
により定義する.
\[ I=\int_0^6 |f^\prime(x)| \, dx \]
が最小になるような$a$の値と,そのときの$I$の値を求めよ.
京都教育大学 国立 京都教育大学 2015年 第6問
区間$[0,\ 1]$を$n$等分して得た分点を
\[ 0=x_0<x_1<\cdots <x_n=1 \]
とならべる.すなわち,
\[ x_k=\frac{k}{n} \quad (k=0,\ 1,\ \cdots,\ n) \]
とおく.$f(x)=x^2+1 (0 \leqq x \leqq 1)$に対して,$4$点$(x_{k-1},\ 0)$,$(x_k,\ 0)$,$(x_k,\ f(x_k))$,$(x_{k-1},\ f(x_{k-1}))$を頂点とする台形$S_k (k=1,\ 2,\ \cdots,\ n)$の$k=1$から$k=n$までの集まりを$R_n$とおく.

(1)図形$R_4$を図示せよ.
(2)図形$R_n$の面積を$r_n$とするとき,$\displaystyle \lim_{n \to \infty}r_n=\frac{4}{3}$であることを証明せよ.
宮城教育大学 国立 宮城教育大学 2015年 第3問
関数$f(x)$が
\[ f(x)=3x^2-\int_0^1 |f(t)| \, dt \]
をみたすとき,次の問に答えよ.

(1)方程式$4x^3-6x^2+1=0$を$\displaystyle x=\frac{1}{u}$とおくことにより解け.
(2)$\displaystyle \int_0^1 |f(t)| \, dt=3a^2$とおくとき,$a$の値を求めよ.ただし,$a \geqq 0$とする.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第2問
実数$a,\ b$に対し,$f(x)=x^3-3ax+b$とおく.$-1 \leqq x \leqq 1$における$|f(x)|$の最大値を$M$とする.このとき以下の各問いに答えよ.

(1)$a>0$のとき,$f(x)$の極値を$a,\ b$を用いて表せ.
(2)$b \geqq 0$のとき,$M$を$a,\ b$を用いて表せ.
(3)$a,\ b$が実数全体を動くとき,$M$のとりうる値の範囲を求めよ.
東京医科歯科大学 国立 東京医科歯科大学 2015年 第3問
実数$a,\ b$に対し,$f(x)=x^3-3ax+b$とおく.$-1 \leqq x \leqq 1$における$|f(x)|$の最大値を$M$とする.このとき以下の各問いに答えよ.

(1)$a>0$のとき,$f(x)$の極値を$a,\ b$を用いて表せ.
(2)$\displaystyle a=\frac{1}{3},\ b=1$のとき,$M$を求めよ.
(3)$M=4,\ b=1$となるような$f(x)$をすべて求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。