タグ「関数」の検索結果

37ページ目:全2213問中361問~370問を表示)
東京海洋大学 国立 東京海洋大学 2015年 第1問
$a \geqq 0$とするとき,$3$次関数$f(x)=x^3-3ax+a$について,次の問に答えよ.

(1)$a=1$のとき,$f(x)$の極値を求め,$y=f(x)$のグラフをかけ.
(2)$0 \leqq x \leqq 2$において$f(x) \geqq 0$となるような$a$の値の範囲を求めよ.
東京海洋大学 国立 東京海洋大学 2015年 第2問
等式
\[ f(x)+\int_1^2 (x-kt) f(t) \, dt=17x-28 \cdots\cdots (*) \]
について,次の問に答えよ.

(1)$k=1$のとき,$(*)$を満たす関数$f(x)$を求めよ.
(2)$\displaystyle k=\frac{30}{17}$のとき,$(*)$を満たす関数$f(x)$に対して,$y=f(x)$のグラフは常にある定点を通ることを示し,その定点の座標を求めよ.
富山大学 国立 富山大学 2015年 第2問
関数$f(x)=\sin 3x-\cos 3x+3 \sin 2x (0 \leqq x \leqq 2\pi)$について,次の問いに答えよ.

(1)$t=\sin x+\cos x (0 \leqq x \leqq 2\pi)$とするとき,$t$のとりうる値の範囲を求めよ.
(2)$f(x)$を$t$の関数として表せ.
(3)$f(x)$の最小値を求めよ.ただし,最小値をとるときの$x$の値は求めなくてよい.
富山大学 国立 富山大学 2015年 第3問
次の問いに答えよ.

(1)関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.$y=g(x)$を$2$点$(a,\ f(a))$,$(b,\ f(b))$を通る直線の方程式とするとき,区間$(a,\ b)$で常に$f(x)>g(x)$であることを示せ.
(2)$n$を$2$以上の自然数とするとき,$j=1,\ 2,\ \cdots,\ n-1$について
\[ \frac{\log j+\log (j+1)}{2}<\int_j^{j+1} \log x \, dx \]
が成り立つことを示せ.
(3)$n$を$2$以上の自然数とするとき,次の不等式が成り立つことを示せ.
\[ \sqrt{n!(n-1)!}<n^n e^{-n+1} \]
富山大学 国立 富山大学 2015年 第1問
次の問いに答えよ.

(1)関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.$y=g(x)$を$2$点$(a,\ f(a))$,$(b,\ f(b))$を通る直線の方程式とするとき,区間$(a,\ b)$で常に$f(x)>g(x)$であることを示せ.
(2)$n$を$2$以上の自然数とするとき,$j=1,\ 2,\ \cdots,\ n-1$について
\[ \frac{\log j+\log (j+1)}{2}<\int_j^{j+1} \log x \, dx \]
が成り立つことを示せ.
(3)$n$を$2$以上の自然数とするとき,次の不等式が成り立つことを示せ.
\[ \sqrt{n!(n-1)!}<n^n e^{-n+1} \]
富山大学 国立 富山大学 2015年 第2問
$a$を実数とする.関数$f(x),\ g(x)$を$f(x)=x^2+ax+3$,$\displaystyle g(x)=f(x) f \left( \frac{1}{x} \right) (x \neq 0)$と定める.このとき,次の問いに答えよ.

(1)$x \neq 0$のとき,$\displaystyle x+\frac{1}{x}$のとりうる値の範囲を求めよ.
(2)$\displaystyle t=x+\frac{1}{x} (x \neq 0)$とするとき,$g(x)$を$a,\ t$を用いて表せ.
(3)$g(x) (x \neq 0)$の最小値が負となるような$a$の値の範囲を求めよ.
富山大学 国立 富山大学 2015年 第3問
関数$f(x)=\sin 3x-\cos 3x+3 \sin 2x (0 \leqq x \leqq 2\pi)$について,次の問いに答えよ.

(1)$t=\sin x+\cos x (0 \leqq x \leqq 2\pi)$とするとき,$t$のとりうる値の範囲を求めよ.
(2)$f(x)$を$t$の関数として表せ.
(3)$f(x)$の最小値を求めよ.ただし,最小値をとるときの$x$の値は求めなくてよい.
富山大学 国立 富山大学 2015年 第1問
$f(x)=\log x (x>0)$とし,曲線$C_1:y=f(x)$上の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と曲線$C_2:y={(x-\sqrt{2})}^2$で囲まれた図形の面積を$S$とする.このとき,次の問いに答えよ.

(1)$S$を$t$を用いて表せ.
(2)$S$を最小にする$t$の値を求めよ.ただし,そのときの$S$の値は求めなくてよい.
富山大学 国立 富山大学 2015年 第2問
関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.このとき,次の問いに答えよ.

(1)$\displaystyle f(x)>\frac{1}{b-a} \{(b-x)f(a)+(x-a)f(b) \} (a<x<b)$が成り立つことを示せ.
(2)$c$が$a<c<b$を満たすならば
\[ f(x) \leqq f^\prime(c)(x-c)+f(c) \quad (a<x<b) \]
が成り立つことを示せ.
富山大学 国立 富山大学 2015年 第3問
$f(x)=\log x (x>0)$とし,曲線$C_1:y=f(x)$上の点$(t,\ f(t))$における接線を$\ell$とする.直線$\ell$と曲線$C_2:y={(x-\sqrt{2})}^2$で囲まれた図形の面積を$S$とする.このとき,次の問いに答えよ.

(1)$S$を$t$を用いて表せ.
(2)$S$を最小にする$t$の値を求めよ.ただし,そのときの$S$の値は求めなくてよい.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。