タグ「関数」の検索結果

218ページ目:全2213問中2171問~2180問を表示)
関西大学 私立 関西大学 2010年 第1問
関数$f(x)=\log (\sin x+2) (0<x<2\pi)$について,次の問いに答えよ.

(1)$f(x)$の第$1$次導関数$f^\prime(x)$と第$2$次導関数$f^{\prime\prime}(x)$を求めよ.
(2)$f(x)$の極値を求めよ.
(3)$f(x)$の変曲点を求め,$y=f(x)$のグラフの概形を座標平面上にかけ.
(4)$k$を実数の定数とするとき,$0<x<2\pi$における$\log (\sin x+2)-k=0$の解の個数を調べよ.
関西大学 私立 関西大学 2010年 第3問
$x$の関数$y=|e^{-x|-a}$に対して,次の問いに答えよ.ここで$a$は$-\infty<a<\infty$の範囲の定数とする.

(1)$e^{-1}<a<1$であるとき,$x$の関数$y=|e^{-x|-a}$のグラフの概形を座標平面上にかけ.
(2)$\displaystyle f(a)=\int_0^1 |e^{-x|-a} \, dx$とおく.$-\infty<a<\infty$であるとき,$f(a)$を$a$を用いて表せ.
(3)$a$が$-\infty<a<\infty$であるとき,$f(a)$の最小値を求めよ.
関西大学 私立 関西大学 2010年 第4問
次の$[ ]$をうめよ.

(1)$x^2-3x+5=0$の$2$つの解を$\alpha,\ \beta$とする.このとき,$\alpha^2+\beta^2=[$1$]$であり,さらに$\displaystyle \frac{\alpha}{\beta}+\frac{\beta}{\alpha}=[$2$]$である.
(2)$xy$平面上の$3$点$(1,\ 2)$,$(2,\ 4)$,$(3,\ 1)$にあと$1$点$\mathrm{A}$を加えることにより,それらが平行四辺形の$4$つの頂点になるとする.このとき,$\mathrm{A}$の$y$座標をすべて求めると$[$3$]$である.
(3)$n$は自然数とする.$(x+y+1)^n$を展開したとき,$xy$の項の係数は$90$であった.このときの$n$の値は$[$4$]$である.
(4)$-1<x$において,関数$f(x)$は
\[ f(x)=\lim_{n \to \infty} \frac{x^n}{x^{n+2}+x^n+1} \]
で定義されている.$f(x)$を求めると,ある値$\alpha$で$f(x)$が連続にならないことがわかる.このとき$f(\alpha)$と等しい値をとるもうひとつの$x$は$[$5$]$である.
(5)$i=\sqrt{-1}$とする.複素数$\alpha=1+\sqrt{3}i$に対して,$\displaystyle \frac{(\alpha+2)^6}{\alpha^3}$の値は$[$6$]$である.
(6)$0<x \leqq \pi$とする.方程式
\[ \sin 3x+\sin x=\cos x \]
の解$x$をすべて求めると$[$7$]$である.
中央大学 私立 中央大学 2010年 第1問
次の問いの答を記入せよ.

(1)$|\overrightarrow{a}|=3$,$|\overrightarrow{b}|=4$,$|\overrightarrow{a}+\overrightarrow{b}|=6$のとき,$|\overrightarrow{a}-\overrightarrow{b}|$の値を求めよ.
(2)定義域が$0 \leqq x \leqq 3$である$2$次関数$y=-ax^2+2ax+b$の最大値が$3$で,最小値が$-5$であるとき,定数$a,\ b$の値を求めよ.ただし$a>0$とする.
(3)$\displaystyle \cos \theta=-\frac{\sqrt{3}}{2}$を満たす角$\theta$を求めよ.ただし,$0^\circ \leqq \theta \leqq {180}^\circ$とする.
(4)$3$つの数$x-2,\ x+1,\ x+7$がこの順で等比数列となるとき,$x$の値を求めよ.
(5)白玉$3$個,赤玉$2$個が入っている袋から玉を$1$個取り出し色を確認してからもとに戻す.この操作を$3$回続けて行う.$1$回目に白,$2$回目に赤,$3$回目に赤の玉が取り出される確率を求めよ.ただし,どの玉も取り出される確率は等しいとする.
(6)関数$y=x^3-12x$の区間$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(7)次の条件を満たす関数$f(x)$を求めよ.
\[ \left\{ \begin{array}{l}
f^\prime(x)=6x^2-2x+3 \\
f(1)=7
\end{array} \right. \]
中央大学 私立 中央大学 2010年 第3問
関数
\[ f(x)=|x| \left( \frac{1}{3}x^2-\frac{1}{4}x \right)-\frac{3}{4}x^2+1 \]
に対し,以下の設問に答えよ.

(1)$a<0$とするとき,関数$y=f(x)$の$x=a$における微分係数$f^\prime(a)$を求めよ.
(2)$b>0$とするとき,関数$y=f(x)$の$x=b$における微分係数$f^\prime(b)$を求めよ.
(3)関数$y=f(x)$の区間$-2 \leqq x \leqq 3$における最大値と最小値を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2010年 第4問
$k$を実数の定数とするとき,下記の問いに答えなさい.

(1)$f(x)=2x^3+x^2-5x+3$,$g(x)=x^4+x^2-(k+1)x+k$とおく.$k$の値が変化するとき,曲線$y=f(x)$と$y=g(x)$の共有点の個数を調べなさい.
(2)$x$についての方程式$\displaystyle 6 \tan x+\cos x-k \sin x=0 \left( 0<x<\frac{\pi}{2} \right)$を考える.$k$の値が変化するとき,実数解の個数が$2$個であるのは$[$1$]$のときである.また実数解の個数が$1$個であるのは$[$2$]$のときであり,実数解が存在しないのは$[$3$]$のときである.
$[$1$]$,$[$2$]$,$[$3$]$に該当する$k$の条件を答えなさい.
中央大学 私立 中央大学 2010年 第3問
関数
\[ f(x)=\frac{5}{8}x^2+|x| \left( \frac{1}{2}+\frac{3}{8}x \right) \]
に対し,$xy$平面上のグラフ$C:y=f(x)$を考える.$a$を正の実数とし,$y$軸上の点$\mathrm{P}(0,\ -a^2)$から$C$に$2$本の接線$\ell_1$,$\ell_2$を引く.このとき,以下の設問に答えよ.

(1)$C$と$\ell_1$の接点を$\mathrm{S}(s,\ f(s))$とする.$s<0$のとき,$a$を用いて$s$を表せ.
(2)$C$と$\ell_2$の接点を$\mathrm{T}(t,\ f(t))$とする.$t>0$のとき,$a$を用いて$t$を表せ.
(3)$\ell_1$と$\ell_2$が直交するような$a$の値を求めよ.
東京女子大学 私立 東京女子大学 2010年 第1問
$a$は$0 \leqq a \leqq 1$を満たす実数とする.関数$y=|x-a|$のグラフと円周$x^2+y^2=1$の$2$交点の中点を$\mathrm{M}$とする.

(1)$\mathrm{M}$の座標を$a$を用いて表せ.
(2)$a$が$0 \leqq a \leqq 1$の範囲を動くときの$\mathrm{M}$の軌跡を図示せよ.
早稲田大学 私立 早稲田大学 2010年 第6問
関数$\displaystyle y=\frac{1}{x}$のグラフと接する$2$本の直線$\ell_1$,$\ell_2$が第$2$象限で交わっている.実数$a,\ b$は$a>0$,$b<0$とし直線$\ell_1$は点$(a,\ 0)$を通り,直線$\ell_2$は点$(b,\ 0)$を通る.点$\mathrm{A}$は直線$\ell_1$と$x$軸の交点,点$\mathrm{B}$は直線$\ell_1$と直線$\ell_2$の交点,点$\mathrm{C}$は直線$\ell_2$と$y$軸の交点とする.このとき,三角形$\mathrm{ABC}$の面積$S$は$\displaystyle t=\frac{a}{b}$の関数で,
\[ S=\frac{[テ](t+[ト])t}{t+[ナ]} \]
となり,面積$S$は$t=[ニ]-\sqrt{[ヌ]}$で最小値をとる.
神奈川大学 私立 神奈川大学 2010年 第3問
$2$次関数$y=f(x)$のグラフは,頂点が$\displaystyle \left( \frac{3}{2},\ -\frac{7}{2} \right)$で,点$(3,\ 1)$を通る.以下の問いに答えよ.

(1)$f(x)$を求め,$y=f(x)$のグラフをかけ.
(2)$y=f(x)$の接線のうち,傾きが$4$となるものの方程式を求めよ.
(3)$(2)$で求めた接線に平行で点$(2,\ 1)$を通る直線を$\ell$とする.直線$\ell$と放物線$y=f(x)$の交点の$x$座標を求めよ.
(4)直線$\ell$と放物線$y=f(x)$によって囲まれた部分の面積を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。