タグ「関数」の検索結果

150ページ目:全2213問中1491問~1500問を表示)
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
関数$f(x)=x(x-1)(x-3)(x-4)$は$0 \leq x \leq 4$の範囲において,
$x=[$35$]$で最大値[$36$]をとり,$x=\displaystyle\frac{[$37$]\text{±}\sqrt{[$38$][$39$]}}{[$40$]}$
で最小値$-\displaystyle\frac{[$41$]}{[$42$]}$をとる.
早稲田大学 私立 早稲田大学 2012年 第3問
実数係数の$x$の多項式で表された関数$f(x)$は,導関数$f^{\prime}(x)$がすべての実数$x$に対して
$f^\prime (x)>0$をみたし,かつ,$f^\prime (x)$は極大値をもつとする.実数$s$に対して,点$(s,\ f(s))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標を$s$の関数として$g(s)$と表す.

(1)導関数$g^\prime(s)$を求めよ.
(2)関数$g(s)$は極大値と極小値をもつことを示せ.
東京理科大学 私立 東京理科大学 2012年 第4問
関数$f(x)$を
\[ f(x) = \frac{\sqrt{2}}{6}x^3 + \frac{9}{2} \]
と定める.さらに,$\mathrm{O}$を原点とする座標平面上の曲線$C:y=f(x)$を考える.

(1)曲線$C$上の点$(2,\ f(2))$における接線を$\ell_1$とおく.直線$\ell_1$の方程式を求めよ.
(2)$\ell_1$を(1)で定めた直線とする.曲線$C$と直線$\ell_1$は点$(2,\ f(2))$以外にもう$1$つ共有点をもつ.その共有点の$x$座標を求めよ.
(3)$m$を実数とし,原点$\mathrm{O}$を通る直線$\ell_2:y=mx$を考える.曲線$C$と直線$\ell_2$が共有点をちょうど$2$個もつときの$m$の値を求めよ.
明治大学 私立 明治大学 2012年 第2問
以下の$[ ]$にあてはまる値を答えよ.
\[ f(x) = \frac{1}{2}x^2 -3x -1+|x^2-2x-3| \]
とおく.

(1)不等式$x^2-2x-3 \leqq 0$を解くと$[あ]$となる.
(2)方程式$f(x)=0$の実数解をすべて求めると$[い]$となる.
(3)関数$y=f(x)$の定義域を$-2 \leqq x \leqq 5$とするとき,値域は$[う]$となる.
慶應義塾大学 私立 慶應義塾大学 2012年 第5問
自然数$n$に対し整数を値にとる関数$f(n)$を次のように定める.
テーブルの上には$n$個の碁石が置かれている.$2$人のプレーヤー$\mathrm{A}$と$\mathrm{B}$が交互に碁石を$1$個あるいは$2$個とる.そして最後に碁石をとったプレーヤーが負けである.ゲームは$\mathrm{A}$から始める.$\mathrm{B}$がいかなるとり方をしても,$\mathrm{A}$が最良のとり方をすれば勝てるときは$f(n)=1$とする.逆に$\mathrm{A}$がいかなるとり方をしても,$\mathrm{B}$が最良のとり方をすれば勝てないときは$f(n)=-1$とする.それ以外の場合は$f(n)=0$とする.たとえば$f(1)=-1$,$f(2)=1$である.
\[ f(3)=[(101)][(102)],\quad f(4)=[(103)][(104)],\quad f(5)=[(105)][(106)] \]
であり
\[ \sum_{n=1}^{20}f(n)=[(107)][(108)] \]
となる.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えなさい.

(1)関数
\[ f(x) = 2\sqrt{3}\,\sin^2\frac{x}{2}-\sin x+a \quad (0 \leqq x \leqq \pi) \]
の最小値が$\sqrt{3}$であるとする.このとき,$a=[ア]$であり,$f(x)$が最小となるのは$x=\displaystyle\frac{\pi}{[イ]}$のときである.
(2) $n$を$5$以上の自然数とする.$1$以上$n$以下の自然数から互いに隣り合わない$2$つを選ぶ組合せは
\[ \frac{1}{[ウ]} \left( n- [エ]\right) \left( n- [オ] \right) \]
通りあり,どの$2$つも隣り合わない$3$つを選ぶ組合せは
\[ \frac{1}{[カ]} \left( n- [キ]\right) \left( n- [ク] \right) \left( n- [ケ] \right) \]
通りある.ただし,$[エ] < [オ], \quad [キ] < [ク] < [ケ]$とする.
(3)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$4:3$に内分する点を$\mathrm{D}$とし,線分$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\mathrm{AP}:\mathrm{PD}=s:(1-s)$,$\mathrm{BP}:\mathrm{PC}=t:(1-t)$とするとき
\[ \displaystyle s=\frac{[コ]}{[サ]}, \quad t=\frac{[シ]}{[ス]} \]
である.また,$\mathrm{OP}$の延長と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき
\[ \overrightarrow{\mathrm{OQ}} = \frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OP}} \]
である.
東京理科大学 私立 東京理科大学 2012年 第1問
次の文章中の$[ア]$から$[ラ]$までに当てはまる数字$0$~$9$を求めて記入せよ.ただし,分数は既約分数として表しなさい.

(1)数列$\{a_n\},\ \{b_n\} (n=1,\ 2,\ 3,\ \cdots)$は次の関係式を満たすとする.
\[ a_1=0, \quad \left\{ \begin{array}{l}
b_n=\displaystyle\frac{1}{5}a_n+1 \\
a_{n+1}=3b_n+2
\end{array} \right. \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき,$b_1 = [ア]$で,$n \geq 1$に対して$b_{n+1} = \displaystyle\frac{[イ]}{[ウ]} b_n + \frac{[エ]}{[オ]}$となる.これより,
\[ b_n = \displaystyle\frac{[カ]}{[キ]} - \frac{[ク]}{[ケ]} \left(\frac{[コ]}{[サ]} \right)^{n-1} \quad (n \geq 1) \]
となるので,
\[ \lim_{n \to \infty} b_n = \frac{[シ]}{[ス]}, \qquad \lim_{n \to \infty} \frac{b_{2n}-b_n}{b_{n+1}-b_n} = \frac{[セ]}{[ソ]} \]
となる。また,
\[ \sum_{n=1}^{\infty} (a_{2n}-a_n) = \frac{[タ][チ][ツ]}{[テ][ト]} \]
である.
(2)複素数$z = \cos\theta + i\sin\theta (0 \leq \theta<2\pi)$に対して,複素数$\omega$を
\[ \omega = (4+3i)z + 6i\,\overline{z} \]
で定める.ただし,$i$は虚数単位を,$\overline{z}=\cos\theta-i\sin\theta$は$z$と共役な複素数を表す.
いま$z$の実部と虚部がともに$0$以上となる範囲で$\theta$を動かす.このとき,$\omega$の実部の最大値は[ナ],最小値は[ニ]であり,$\omega \overline{\omega}$の最大値は[ヌ][ネ][ノ],最小値は[ハ][ヒ]である.ただし,$\overline{\omega}$は$\omega$と共役な複素数を表す.

(3)$x>0$で定義された微分可能な関数$f(x)$が,
\[ f^\prime(x) = 2\log x + \frac{1}{7-2e} \int_1^{e} \frac{f(t)}{t}\, dt, \quad f(1)=0 \]
を満たすとする.ここで,$f^\prime(x)$は$f(x)$の導関数,$\log$は自然対数,$e$は自然対数の底である.$f(x)$を求めると,
\[ f(x) = [フ] x\log x - \frac{[ヘ]}{[ホ]} x + \frac{[マ]}{[ミ]} \quad (x>0) \]
となる.関数$f(x)$は$\displaystyle x=e^{-\frac{[ム]}{[メ]}}$のとき,最小値
\[ -[モ]e^{-\frac{[ヤ]}{[ユ]}} + \frac{[ヨ]}{[ラ]}\]
をとる。
東京理科大学 私立 東京理科大学 2012年 第2問
$2$つの関数
\[ x=g(\theta)=\frac{9}{4}\sin 2\theta, \quad y=h(x)=\log x \]
に対して,関数$g(\theta)$と関数$h(x)$の合成関数
\[ f(\theta) = h(g(\theta)) \]
を考える.ただし,対数は自然対数とする.

(1)$\displaystyle f\left( \frac{\pi}{3} \right) = -[ア]\log 2 + \frac{[イ]}{[ウ]}\log 3$である.

(2)実数$\theta_1$が$\displaystyle \sin \theta_1+\cos \theta_1 = \frac{\sqrt{82}}{8}$を満たすとき,
\[ f(\theta_1) = - [エ] \log 2 + [オ]\log 3 \]
である.
(3)$f(\theta)$の$\displaystyle\theta=\frac{\pi}{8},\ \theta=\frac{\pi}{12}$における微分係数はそれぞれ
\[ f^{\; \prime} \left( \frac{\pi}{8} \right) = [カ], \quad f^{\; \prime} \left(\frac{\pi}{12}\right) = [キ]\sqrt{[ク]} \]
となる.
明治大学 私立 明治大学 2012年 第2問
$f(x)=x^3-48x,\ g(x)=9x+k$($k$は定数)がある.以下の問に答えなさい.

(1)$y=f(x)$と$y=g(x)$のグラフが$3$つの異なる交点を持つ必要十分条件は$|k|<[ケ][コ]\sqrt{[サ][シ]}$である.
(2)$y=f(x)$は,$x=a$のとき,極大値$b$をとる.また,$g(a)=c$とする.
$\log_{10}b-7\log_{10}c+7=0$が成立するのは,$k=[ス][セ]$のときである.このとき,$y=f(x)$と$y=g(x)$のグラフは,$3$つの異なる交点をもち,それらの$x$座標の値は,小さい順に並べると$-[ソ],\ -[タ],\ [チ]$となる.
法政大学 私立 法政大学 2012年 第1問
$f(x)=|2x^2-10x+9|$とおく.

(1)$y=f(x)$のグラフをかけ.
(2)$y=f(x)$のグラフと直線$y=ax+1$がちょうど$4$個の共有点をもつような,実数の定数$a$の値の範囲を求めよ.
スポンサーリンク

「関数」とは・・・

 まだこのタグの説明は執筆されていません。