タグ「開始」の検索結果

1ページ目:全9問中1問~10問を表示)
東京薬科大学 私立 東京薬科大学 2016年 第4問
$2$つの動点$\mathrm{A}$,$\mathrm{B}$は,一辺の長さが$1$の立方体の辺上を,毎秒$1$の速さで,次の規則にしたがって移動する.


\mon[$\lbrack$規則$1 \rbrack$] 最初は同じ頂点にあり,同時に移動を開始する.
\mon[$\lbrack$規則$2 \rbrack$] どの頂点からも,$1$秒で移動可能な$3$つの頂点のいずれかに確率$\displaystyle \frac{1}{3}$で移動する.

自然数$n$について,移動を開始してから$n$秒後における$2$点$\mathrm{A}$,$\mathrm{B}$間の距離が$\sqrt{2}$となる確率を$P_n$とする.以下の問に答えよ.


(1)$\displaystyle P_1=\frac{[ヘ]}{[ホ]},\ P_2=\frac{[マミ]}{[ムメ]}$である.

(2)$P_n$と$P_{n+1}$の関係は
\[ P_{n+1}=\frac{[モ]}{[ヤ]} P_n+\frac{[ユ]}{[ヨ]} \quad (n=1,\ 2,\ \cdots) \]
である.
(3)$\displaystyle P_n=\frac{[ラ]}{[リ]} \left( 1-\frac{[ル]}{{[レ]}^n} \right) (n=1,\ 2,\ \cdots)$である.
横浜市立大学 公立 横浜市立大学 2016年 第2問
三角形があり,その頂点を反時計回りの順に$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とおく.表と裏の出現確率が等しいコインを投げ,表が出たら時計回りに隣り合う次の頂点へ,裏が出たら反時計回りに隣り合う次の頂点へ移動する試行を繰り返し行う.たとえば,頂点$\mathrm{A}$にいてコインの裏が出たならば,頂点$\mathrm{B}$へ移動することになる.

頂点$\mathrm{A}$から移動を開始するとき,$n$回の試行の後に頂点$\mathrm{A}$にいる確率を$P_n(\mathrm{A})$とする.このとき,以下の各問に答えよ.ただし,$n$は$n \geqq 1$である整数とする.

(1)$P_1(\mathrm{A})$を求めよ.
(2)$P_4(\mathrm{A})$を求めよ.
(3)$n \geqq 2$のとき$P_n(\mathrm{A})$を$P_{n-1}(\mathrm{A})$の式で表せ.
(4)$n \geqq 2$のとき$P_n(\mathrm{A})-P_{n-1}(\mathrm{A})$を$n$の式で表せ.
(5)$P_n(\mathrm{A})$を求めよ.
岐阜薬科大学 公立 岐阜薬科大学 2013年 第3問
$xy$平面上に$7$点$\mathrm{A}(-4,\ 1)$,$\mathrm{B}(-5,\ 0)$,$\mathrm{C}(-3,\ 0)$,$\mathrm{D}(-2,\ 1)$,$\mathrm{E}(0,\ 2)$,$\mathrm{F}(0,\ 0)$,$\mathrm{G}(2,\ 0)$がある.四角形$\mathrm{ABCD}$は右へ,三角形$\mathrm{EFG}$は左へ,それぞれ$x$軸に平行に毎秒$0.5$の速さで移動する.移動開始から$t$秒後の状況について,次の問いに答えよ.

(1)点$\mathrm{F}$が$t_1$秒後に点$\mathrm{C}$と,$t_2$秒後に点$\mathrm{B}$と一致した.$t_1$と$t_2$の値を求めよ.
(2)$t_1<t<t_2$とする.このとき,四角形$\mathrm{ABCD}$と三角形$\mathrm{EFG}$の重なる部分の面積$S$を$t$を用いて表し,$S$の最大値を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
文字$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,数字$1,\ 2,\ 3$と書かれたカードをそれぞれ$1$枚ずつ,合計$6$枚を箱に入れる.箱から無作為にカードを$2$枚引いて,図のような列$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$行$1,\ 2,\ 3$とする$3 \times 3$のマス目に以下のルールに従って,石を置くか取り除く試行を行う.
(図は省略)
\begin{itemize}
引いた$2$枚のカードが文字同士,数字同士の組み合わせである場合何もしない.
引いた$2$枚のカードが文字と数字の組み合わせだった場合,もし,その文字と数字に対応するマス目に石が置かれていない場合,石を置く.もしそのマス目に石が置かれている場合,石を取り除く.
カードは試行ごとに箱に戻すとする.
\end{itemize}
例えば,下図の状態のあとカードを引いて,カードが$\mathrm{B}$,$1$の組み合わせの場合,$\mathrm{B}$列$1$行のマス目に石を置く.カードの組み合わせが$\mathrm{A}$,$2$の場合は,$\mathrm{A}$列$2$行のマス目には石が置かれているのでそれを取り除く.
(図は省略)

ただし,第$1$回目の試行を開始する前には,マス目には石は置かれていない.次の問いに答えよ.

(1)第$1$回目の試行のあと,石がマス目に置かれている確率を求めよ.
(2)第$2$回目の試行のあと,石がマス目に置かれている確率を求めよ.
(3)第$3$回目の試行のあと,マス目に置かれている石の数の期待値を求めよ.
中央大学 私立 中央大学 2012年 第4問
$\mathrm{X}$と$\mathrm{Y}$の$2$人が,次のゲームを繰り返し行う.
\begin{itemize}
$\mathrm{X}$と$\mathrm{Y}$それぞれが,所持しているすべての硬貨を同時に投げる.
表が出た硬貨の枚数が多い方を勝ちとし,枚数が同じ場合は引き分けとする.
勝った方は,負けた方から硬貨を$1$枚もらう.また引き分けの場合は,硬貨のやりとりはしない.
\end{itemize}
ゲーム開始時に,$\mathrm{X}$は$3$枚,$\mathrm{Y}$は$2$枚の硬貨を所持している.このとき以下の設問に答えよ.

(1)$1$回目のゲームが終了したとき,$\mathrm{X}$の所持する硬貨が$4$枚になる確率を求めよ.
(2)$2$回目のゲームが終了したとき,$\mathrm{X}$の所持する硬貨が$5$枚になる確率を求めよ.
九州工業大学 国立 九州工業大学 2011年 第4問
図のような番号のついたマス目と駒とサイコロを使って,以下に示す規則にしたがうゲームを考える.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline
\end{tabular}

\begin{itemize}
駒は最初0番のマス目に置く.
サイコロを投げ,出た目の数だけ駒を10番のマス目に向かって進める.
駒がちょうど10番のマス目に止まればゴールとする.
ただし,10番のマス目を超える場合は,その分だけ10番のマス目から0番のマス目側に戻る.
\end{itemize}
たとえば,7番のマス目に駒があり,出た目が5であった場合は,駒は8番のマス目に移動し,その次に出た目が2であった場合はゴールする.以下の問いに答えよ.

(1)2投目でゴールする確率を求めよ.
(2)2投目の後,9番のマス目に駒がある確率を求めよ.
(3)3投目でゴールする確率を求めよ.
(4)このゲームを使ってA,Bの2名が対戦する.Aから始めて,交互にサイコロを投げて各自の駒を進める試行を行ない,先にゴールした方を勝ちとする.ただし,どちらも2投以内でゴールしない場合は引き分けとする.引き分ける確率を求めよ.
(5)A,Bの駒をそれぞれ0番,$k$番$(0<k<10)$のマス目に置いて(4)と同様の対戦を開始するとき,Aが勝つ確率よりBが勝つ確率の方が高くなるための$k$の条件を求めよ.
愛媛大学 国立 愛媛大学 2011年 第3問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
愛媛大学 国立 愛媛大学 2011年 第4問
自然数$n$を定数として,さいころを投げる次の競技を行う.この競技は,{\bf 試行}$1$と{\bf 試行}$2$からなる.競技者は,はじめに{\bf 試行}$1$を行う.
\begin{screen}

\mon[{\bf 試行}$1$] さいころを投げ,出た目の数を$X$とする.$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
$X$の値を得点として競技を終了する.
\mon[$\bullet$] $X=6$の場合
もし$n=1$ならば,$7$を得点として競技を終了する.
(★) \quad もし$n \geqq 2$ならば,{\bf 試行}$2$に進む.

\end{screen}
\begin{screen}

\mon[{\bf 試行}$2$] 競技者はさいころを投げる.
(★★) \quad 出た目の数を$X$とする.
$X$の値に応じて次の手順に従う.
\mon[$\bullet$] $X=1,\ 2,\ 3,\ 4,\ 5$の場合
次のように定めた$P$を得点として競技を終了する.
\[ P=\left\{ \begin{array}{rl}
-1 & (X=1) \\
7 & (X=2,\ 3,\ 4) \\
13 & (X=5)
\end{array} \right. \]
\mon[$\bullet$] $X=6$の場合
もし競技開始から現時点までにさいころを投げた回数が$n$に等しいならば,$7$を得点として競技を終了する.
そうでないならば,続けてさいころを投げ,(★★)にもどる.

\end{screen}
以下の問いに答えよ.

(1)$n=1$として,{\bf 試行}$1$のみを行う.得点の期待値を求めよ.
(2)$n=4$とする.得点の期待値を求めよ.
(3)$n=30$とする.{\bf 試行}$1$を行い$X=6$になった.このとき,{\bf 試行}$1$の規則(★)を変更して,競技者は

\mon[(a)] 得点$7$を得て競技をただちに終了するか
\mon[(b)] 終了せずに{\bf 試行}$2$に進むか

どちらか一方を選択できるとする.どちらの選択をする方が得点の期待値が大きいか.
西南学院大学 私立 西南学院大学 2011年 第5問
年利率$0.05$,$1$年ごとの複利で借金をする.今年の年度初めに$1000$万円を借りた.$1$年後(今年の年度末)から返済を開始し,毎年,年度末に同じ金額を返済するものとする.このとき,以下の問に答えよ.ただし,$1.05^7=1.407$,$1.05^8=1.477$,$1.05^9=1.551$,$1.05^{10}=1.629$として計算せよ.

(注)複利での借金とは次のようなものである.ある年の年度初めに年利率$r$で$A$円を借りると,$1$年後の借金は$A(1+r)$円になる.ここで$B$円を返すと,$1$年目の年度末の借金残額は$\{A(1+r)-B\}$円になるから,$2$年後の借金は$\{A(1+r)-B\}(1+r)$円になる.

(1)毎年,年度末に$100$万円を返済するとき,$1$年目の年度末の借金残額はいくらになるか.
(2)$10$年目の年度末に返済を完了するためには,毎年,いくらずつ返済すればよいか.ただし,最後の答は,一万円未満を切り捨てて,一万円までの概数で答えよ.
(3)毎年,年度末に$100$万円を返済するとき,借金残額が初めて$500$万円以下となるのは何年目の年度末か.
スポンサーリンク

「開始」とは・・・

 まだこのタグの説明は執筆されていません。