タグ「長さ」の検索結果

43ページ目:全1099問中421問~430問を表示)
千葉大学 国立 千葉大学 2014年 第1問
下図のような$1$辺の長さ$10 \, \mathrm{cm}$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1 \, \mathrm{cm}$進む.また,点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$2 \, \mathrm{cm}$進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$35 \, \mathrm{cm}^2$となる時刻をすべて求めよ.

\begin{zahyou*}%
[ul=10mm,Ueyohaku=1em,
Hidariyohaku=1em,%
Sitayohaku=1em]%
(0,3)(0,3)
\tenretu{A(0,3)nw;B(0,0)sw;%
C(3,0)se;D(3,3)ne}
\Takakkei{\A\B\C\D}
\end{zahyou*}
千葉大学 国立 千葉大学 2014年 第3問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第1問
下図のような$1$辺の長さ$10 \, \mathrm{cm}$の正方形$\mathrm{ABCD}$がある.点$\mathrm{P}$および点$\mathrm{Q}$は時刻$0$に$\mathrm{A}$および$\mathrm{B}$をそれぞれ出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$1 \, \mathrm{cm}$進む.また,点$\mathrm{R}$は時刻$0$に$\mathrm{B}$を出発し,正方形$\mathrm{ABCD}$の周上を反時計回りに毎秒$2 \, \mathrm{cm}$進む.点$\mathrm{R}$が$\mathrm{A}$に達するまでに$\triangle \mathrm{PQR}$の面積が$35 \, \mathrm{cm}^2$となる時刻をすべて求めよ.

\begin{zahyou*}%
[ul=10mm,Ueyohaku=1em,
Hidariyohaku=1em,%
Sitayohaku=1em]%
(0,3)(0,3)
\tenretu{A(0,3)nw;B(0,0)sw;%
C(3,0)se;D(3,3)ne}
\Takakkei{\A\B\C\D}
\end{zahyou*}
千葉大学 国立 千葉大学 2014年 第5問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
千葉大学 国立 千葉大学 2014年 第2問
座標平面上に,原点を中心とする半径$1$の円と,その円に外接し各辺が$x$軸または$y$軸に平行な正方形がある.円周上の点$(\cos \theta,\ \sin \theta)$(ただし$\displaystyle 0<\theta<\frac{\pi}{2}$)における接線と正方形の隣接する$2$辺がなす三角形の$3$辺の長さの和は一定であることを示せ.また,その三角形の面積を最大にする$\theta$を求めよ.
京都教育大学 国立 京都教育大学 2014年 第3問
次の問に答えよ.

(1)$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は異なる$3$点,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.このとき,
\[ \mathrm{OA}^2+\mathrm{OB}^2=2(\mathrm{AM}^2+\mathrm{OM}^2) \]
であることを証明せよ.
(2)$xy$平面の原点$\mathrm{O}$を中心とする半径$3$の円を$\mathrm{O}_3$,$xy$平面の$\mathrm{O}$を中心とする半径$4$の円を$\mathrm{O}_4$とする.さらに$\mathrm{AB}$は$xy$平面上の長さ$6$の線分,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.次の条件$p,\ q$を考える.

$p:2$点$\mathrm{A}$,$\mathrm{B}$は$\mathrm{O}_4$の内部にある.
$q:$点$\mathrm{M}$は$\mathrm{O}_3$の内部にある.

このとき,次の問に答えよ.

(i) $p$は$q$であるための十分条件であることを証明せよ.
(ii) $p$は$q$であるための必要条件ではないことを証明せよ.
京都教育大学 国立 京都教育大学 2014年 第5問
幅$30 \, \mathrm{cm}$の長方形の金属板を,図$1$の点線で折り曲げて雨どいを作る.図$2$は折り曲げた金属板のどの面にも垂直な平面による断面である.また,$\mathrm{AB}$,$\mathrm{CP}$は水平面に垂直,$\mathrm{AC}$は水平で,$\mathrm{AB}$の長さは$10 \, \mathrm{cm}$であるとする.$\mathrm{CP}$の長さを$x \, \mathrm{cm} (0<x<10)$,雨どいの上記平面による断面積(水が流れることのできる部分の断面積)を$S \, \mathrm{cm}^2$とするとき,次の問に答えよ.ただし,金属板の厚みは無視する.

(1)$S$を$x$で表せ.
(2)$S^2$を考えて,$S$の最大値とそのときの$x$の値を求めよ.
(図は省略)
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。