タグ「長さ」の検索結果

3ページ目:全1099問中21問~30問を表示)
九州工業大学 国立 九州工業大学 2016年 第3問
複素数$z_n$を
\[ z_0=0,\quad z_1=1,\quad z_{n+2}=z_{n+1}+\alpha (z_{n+1}-z_n) \quad (n=0,\ 1,\ 2,\ \cdots) \]
により定める.ただし,$i$を虚数単位とし,$\displaystyle \alpha=\frac{1}{2} \left( \cos \frac{\pi}{3}+i \sin \frac{\pi}{3} \right)$とする.また,複素数平面上で複素数$z_n$を表す点を$\mathrm{P}_n$とする.以下の問いに答えよ.

(1)$z_2,\ z_3,\ z_4$を求めよ.
(2)点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$,$\mathrm{P}_3$,$\mathrm{P}_4$を図示せよ.また,線分$\mathrm{P}_0 \mathrm{P}_1$,$\mathrm{P}_1 \mathrm{P}_2$,$\mathrm{P}_2 \mathrm{P}_3$,$\mathrm{P}_3 \mathrm{P}_4$の長さ,および$\angle \mathrm{P}_2 \mathrm{P}_1 \mathrm{P}_0$,$\angle \mathrm{P}_3 \mathrm{P}_2 \mathrm{P}_1$,$\angle \mathrm{P}_4 \mathrm{P}_3 \mathrm{P}_2$の値も図中に示せ.
(3)$z_{n+1}-z_n (n=1,\ 2,\ 3,\ \cdots)$を$\alpha$と$n$を用いて表せ.
(4)$z_n$の実部,虚部をそれぞれ$x_n,\ y_n$とする.このとき,$x_n,\ y_n$をそれぞれ$n$を用いて表せ.
(5)$(4)$で求めた$x_n,\ y_n$について,$\displaystyle \lim_{n \to \infty}x_n,\ \lim_{n \to \infty}y_n$をそれぞれ求めよ.
筑波大学 国立 筑波大学 2016年 第2問
$xy$平面の直線$y=(\tan 2 \theta)x$を$\ell$とする.ただし$\displaystyle 0<\theta<\frac{\pi}{4}$とする.図で示すように,円$C_1$,$C_2$を以下の$(ⅰ)$~$\tokeishi$で定める.

(i) 円$C_1$は直線$\ell$および$x$軸の正の部分と接する.
(ii) 円$C_1$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_1$は$\sin 2\theta$である.
(iii) 円$C_2$は直線$\ell$,$x$軸の正の部分,および円$C_1$と接する.
\mon[$\tokeishi$] 円$C_2$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_2$は$d_1>d_2$を満たす.

円$C_1$と円$C_2$の共通接線のうち,$x$軸,直線$\ell$と異なる直線を$m$とし,直線$m$と直線$\ell$,$x$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)円$C_1,\ C_2$の半径を$\sin \theta,\ \cos \theta$を用いて表せ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{4}$の範囲を動くとき,線分$\mathrm{PQ}$の長さの最大値を求めよ.
(3)$(2)$の最大値を与える$\theta$について直線$m$の方程式を求めよ.
(図は省略)
筑波大学 国立 筑波大学 2016年 第3問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.このとき等式
\[ \overrightarrow{a} \cdot \overrightarrow{b}=\overrightarrow{b} \cdot \overrightarrow{c}=\overrightarrow{c} \cdot \overrightarrow{a}=1 \]
が成り立つとする.$t$は実数の定数で,$0<t<1$を満たすとする.線分$\mathrm{OA}$を$t:1-t$に内分する点を$\mathrm{P}$とし,線分$\mathrm{BC}$を$t:1-t$に内分する点を$\mathrm{Q}$とする.また,線分$\mathrm{PQ}$の中点を$\mathrm{M}$とする.

(1)$\overrightarrow{\mathrm{OM}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$と$t$を用いて表せ.
(2)線分$\mathrm{OM}$と線分$\mathrm{BM}$の長さが等しいとき,線分$\mathrm{OB}$の長さを求めよ.
(3)$4$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が点$\mathrm{M}$を中心とする同一球面上にあるとする.このとき,$\triangle \mathrm{OAB}$と$\triangle \mathrm{OCB}$は合同であることを示せ.
群馬大学 国立 群馬大学 2016年 第5問
$\triangle \mathrm{OAB}$において,$3$辺の長さを$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\mathrm{AB}=4$とする.$\mathrm{P}$は辺$\mathrm{AB}$を$2:3$に内分する点とし,$\mathrm{Q}$は辺$\mathrm{OB}$上の点で線分$\mathrm{OP}$と線分$\mathrm{AQ}$が垂直になるものとする.また,線分$\mathrm{OP}$と線分$\mathrm{AQ}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,次の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{b}$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を求めよ.
(3)$\mathrm{OQ}:\mathrm{QB}$を求めよ.
(4)$\mathrm{OR}:\mathrm{RP}$を求めよ.
宮城教育大学 国立 宮城教育大学 2016年 第2問
辺の長さが$1$の正四面体$\mathrm{OABC}$に対して,平面$\mathrm{OAB}$上の点$\mathrm{P}$が
\[ 2 \overrightarrow{\mathrm{OP}}-3 \overrightarrow{\mathrm{AP}}+\overrightarrow{\mathrm{PB}}=\overrightarrow{\mathrm{0}} \]
を満たしている.点$\mathrm{P}$から平面$\mathrm{OBC}$に垂線を下ろし,その垂線と平面$\mathrm{OBC}$の交点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$と平面$\mathrm{ABC}$の交点を$\mathrm{R}$とする.
\[ \overrightarrow{a}=\overrightarrow{\mathrm{OA}},\quad \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\quad \overrightarrow{c}=\overrightarrow{\mathrm{OC}} \]
とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{PR}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2016年 第2問
辺の長さが$1$の正四面体$\mathrm{OABC}$に対して,平面$\mathrm{OAB}$上の点$\mathrm{P}$が
\[ 2 \overrightarrow{\mathrm{OP}}-3 \overrightarrow{\mathrm{AP}}+\overrightarrow{\mathrm{PB}}=\overrightarrow{\mathrm{0}} \]
を満たしている.点$\mathrm{P}$から平面$\mathrm{OBC}$に垂線を下ろし,その垂線と平面$\mathrm{OBC}$の交点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$と平面$\mathrm{ABC}$の交点を$\mathrm{R}$とする.
\[ \overrightarrow{a}=\overrightarrow{\mathrm{OA}},\quad \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\quad \overrightarrow{c}=\overrightarrow{\mathrm{OC}} \]
とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{PR}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
宮城教育大学 国立 宮城教育大学 2016年 第2問
辺の長さが$1$の正四面体$\mathrm{OABC}$に対して,平面$\mathrm{OAB}$上の点$\mathrm{P}$が
\[ 2 \overrightarrow{\mathrm{OP}}-3 \overrightarrow{\mathrm{AP}}+\overrightarrow{\mathrm{PB}}=\overrightarrow{\mathrm{0}} \]
を満たしている.点$\mathrm{P}$から平面$\mathrm{OBC}$に垂線を下ろし,その垂線と平面$\mathrm{OBC}$の交点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$と平面$\mathrm{ABC}$の交点を$\mathrm{R}$とする.
\[ \overrightarrow{a}=\overrightarrow{\mathrm{OA}},\quad \overrightarrow{b}=\overrightarrow{\mathrm{OB}},\quad \overrightarrow{c}=\overrightarrow{\mathrm{OC}} \]
とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(3)$\overrightarrow{\mathrm{PR}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
香川大学 国立 香川大学 2016年 第2問
\begin{mawarikomi}{50mm}{
(図は省略)
}
図のような,一辺の長さが$1$の立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を考える.対角線$\mathrm{OF}$上に点$\mathrm{P}$をとり,$\mathrm{OP}=x$とする.このとき,次の問に答えよ.

(1)点$\mathrm{P}$を通り対角線$\mathrm{OF}$と直交する平面で,立方体$\mathrm{OABC}$-$\mathrm{DEFG}$を切る.その切り口の多角形の面積$S(x)$を$x$を用いて表せ.
(2)関数$y=S(x)$のグラフをかけ.

(3)定積分$\displaystyle \int_0^{\frac{2 \sqrt{3}}{3}} S(x) \, dx$を求めよ.

\end{mawarikomi}
埼玉大学 国立 埼玉大学 2016年 第2問
$a,\ b,\ c$および$d$は実数で,$a>0$,$b<0$,$d \neq 0$とする.また
\[ f(x)=ax+b,\quad g(x)=x^2+cx+d \]
とおく.$xyz$空間内に$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$があり,点$\mathrm{O}$は原点を表す.点$\mathrm{P}_0(-4,\ 0,\ 4 \sqrt{3})$は定点で,$\mathrm{P}_1$と$\mathrm{P}_2$はそれぞれ実数$t$の値に応じて定まる点$\mathrm{P}_1(-t,\ f(t),\ 2 \sqrt{3})$,$\mathrm{P}_2(t,\ g(t),\ 0)$である.この$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$が次の$3$条件をみたしているとき,定数$a,\ b,\ c,\ d$の値をすべて求めなさい.


(i) $t=0$のとき,ベクトル$\overrightarrow{\mathrm{OP}}_1$と$\overrightarrow{\mathrm{OP}}_2$のなす角は$\displaystyle \frac{\pi}{3}$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}_1$の長さの最小値は$\sqrt{14}$である.
(iii) 点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$は,$t=1$および$t=-3$のとき,それぞれ同一平面上にある.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。