タグ「長さ」の検索結果

28ページ目:全1099問中271問~280問を表示)
上智大学 私立 上智大学 2015年 第3問
平面上に長さ$5$の線分$\mathrm{AB}$がある.$\mathrm{B}$を中心とする半径$4$の円周上を点$\mathrm{C}$が動く.ただし,$\mathrm{C}$は直線$\mathrm{AB}$上にないとする.$\mathrm{A}$で直線$\mathrm{AB}$に接し$\mathrm{C}$を通る円を$\mathrm{O}$とする.直線$\mathrm{BC}$と円$\mathrm{O}$の交点のうち,$\mathrm{C}$でない点を$\mathrm{D}$とする.


(1)$\displaystyle \mathrm{CD}=\frac{[ク]}{[ケ]}$である.

(2)円$\mathrm{O}$の半径のとり得る長さの最小値は$\displaystyle \frac{[コ]}{[サ]}$である.

(3)$\triangle \mathrm{ACD}$のとり得る面積の最大値は$\displaystyle \frac{[シ]}{[ス]}$である.

(4)$\cos \angle \mathrm{ADC}$のとり得る値の最小値は$\displaystyle \frac{[セ]}{[ソ]}$である.

(5)円$\mathrm{O}$の半径と$\triangle \mathrm{ABC}$の外接円の半径が一致するとき$\mathrm{AD}=[タ]$である.
東京理科大学 私立 東京理科大学 2015年 第2問
各辺の長さが整数であるような三角形を考え,その$3$辺の長さを$x,\ y,\ z (x \leqq y \leqq z)$とする.また,$n$を自然数とする.このとき以下の問いに答えよ.

(1)$z=n$であるような三角形の個数を$a_n$とするとき,$a_5$および$a_6$を求めよ.
(2)$(1)$の$a_n$を$n$の式で表せ.
(3)$z \leqq n$であるような三角形の個数を$b_n$とする.

(i) $b_n$を$n$の式で表せ.
(ii) $b_n>2015$となるような最小の自然数$n$を求めよ.

(4)$z=n$であるような三角形で二等辺三角形でないものの個数を$c_n$とするとき,$c_n$を$n$の式で表せ.
北星学園大学 私立 北星学園大学 2015年 第2問
$3$辺の長さが$a,\ b,\ c$である$\triangle \mathrm{ABC}$の面積を$S$,内接円の半径を$r$とする.以下の問に答えよ.

(1)$a=3$,$b=7$,$c=8$のとき$S$を求めよ.
(2)$\displaystyle S=\frac{1}{2}r(a+b+c)$を証明せよ.
(3)$a=3$,$b=7$,$c=8$のとき$r$を求めよ.
東京理科大学 私立 東京理科大学 2015年 第1問
$[ ]$内に$0$から$9$までの数字を$1$つずつ入れよ.

(1)$a$を正の定数とし,関数
\[ f(x)=\tan 2x \ \left( 0 \leqq x<\frac{\pi}{4} \right) \text{および} g(x)=a \cos x\ \left( 0 \leqq x \leqq \frac{\pi}{2} \right) \]
に対して,曲線$y=f(x)$と$y=g(x)$の交点の$x$座標を$\theta$とする.曲線$y=f(x)$と$x$軸,および直線$x=\theta$で囲まれた部分の面積$S$を考える.

(i) $a=[ア]$のとき,$\displaystyle \theta=\frac{\pi}{6}$である.このとき$\displaystyle S=\frac{[イ]}{[ウ]} \times \log [エ]$である.
(ii) $a=\sqrt{[オ]}$のとき,$\displaystyle S=\frac{1}{2} \log \frac{\sqrt{7}+1}{2}$である.

ただし,正の数$A$に対して,$\log A$は$A$の自然対数を表す.
(2)$1$個のサイコロを投げ,その出た目によって,点$\mathrm{P}$を座標平面上で移動させる試行を繰り返す.
点$\mathrm{P}$の出発点$(x_0,\ y_0)$を原点$(0,\ 0)$とし,$1$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_1,\ y_1)$,$2$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_2,\ y_2)$,以下同様に$k$回目の試行(移動)後の点$\mathrm{P}$の座標を$(x_k,\ y_k)$とする.
座標$(x_k,\ y_k) (k=1,\ 2,\ 3,\ \cdots)$は次のルールによって定める.
サイコロを$k$回目に投げたとき,出た目を$3$で割った商を$q$,余りを$r$として,$x_k$を次のように$q$によって定め,
\[ \left\{ \begin{array}{ll}
q=0 & \text{のとき}x_k=x_{k-1} \\
q=1 & \text{のとき}x_k=x_{k-1}+1 \\
q=2 & \text{のとき}x_k=x_{k-1}-1
\end{array} \right. \]
$y_k$を次のように$r$によって定める.
\[ \left\{ \begin{array}{ll}
r=0 & \text{のとき}y_k=y_{k-1} \\
r=1 & \text{のとき}y_k=y_{k-1}+1 \\
r=2 & \text{のとき}y_k=y_{k-1}-1
\end{array} \right. \]
ただし,サイコロを投げたとき,$1$から$6$の目がそれぞれ確率$\displaystyle \frac{1}{6}$で出るものとする.

(i) $(x_2,\ y_2)=(0,\ 0)$である確率は$\displaystyle \frac{[ア]}{[イ]}$であり,$(x_3,\ y_3)=(0,\ 0)$である確率は$\displaystyle \frac{[ウ]}{[エオ]}$である.
(ii) $x_k+y_k$が偶数である確率を$p_k$とすると,$\displaystyle p_1=\frac{[カ]}{[キ]}$であり,
\[ p_k=\frac{[ク]}{[ケ]} \cdot \left( -\frac{[コ]}{[サ]} \right)^k+\frac{[シ]}{[ス]} \quad (k=2,\ 3,\ 4,\ \cdots) \]
である.

(3)$1$辺の長さが$1$の正四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$を$2:1$の比に内分する点を$\mathrm{P}$($\mathrm{OP}:\mathrm{PA}=2:1$),辺$\mathrm{OC}$を$1:2$の比に内分する点を$\mathrm{Q}$($\mathrm{OQ}:\mathrm{QC}=1:2$),辺$\mathrm{AB}$の中点を$\mathrm{M}$とする.


(i) $\displaystyle \mathrm{MP}=\frac{\sqrt{[ア]}}{[イ]}$,$\displaystyle \mathrm{MQ}=\frac{\sqrt{[ウエ]}}{[オ]}$である.

(ii) 三角形$\mathrm{MPQ}$の面積は$\displaystyle \frac{[カ]}{[キク]} \times \sqrt{[ケコ]}$である.

(iii) 辺$\mathrm{BC}$上の$\displaystyle \mathrm{BR}=\frac{[サ]}{[シ]}$となる点$\mathrm{R}$は,$3$点$\mathrm{M}$,$\mathrm{P}$,$\mathrm{Q}$で定まる平面上にある.
東京理科大学 私立 東京理科大学 2015年 第3問
原点を$\mathrm{O}$とする座標平面において点$\mathrm{R}(a,\ b) (a>0,\ b>0)$をとる.$x$軸の正の部分に点$\mathrm{P}$を,$y$軸の正の部分に点$\mathrm{Q}$を,線分$\mathrm{PQ}$が点$\mathrm{R}$を通るようにとる.以下,$\displaystyle \angle \mathrm{OPQ}=\theta \left( 0<\theta<\frac{\pi}{2} \right)$とおく.

(1)線分$\mathrm{PQ}$の長さを,$\theta$および$a,\ b$を用いて表しなさい.
(2)線分$\mathrm{PQ}$の長さを最小にする角$\theta$に対して,$\tan \theta$および線分$\mathrm{PQ}$の長さを$a,\ b$を用いて表しなさい.
(3)$a=1$,$b=8$とする.三角形$\mathrm{OPQ}$の$3$辺の長さの和を最小にする角$\theta$に対して,$\tan \theta$の値および線分$\mathrm{PQ}$の長さを求めなさい.
東北学院大学 私立 東北学院大学 2015年 第2問
一辺の長さが$1$の正五角形$\mathrm{ABCDE}$がある.$\overrightarrow{a}=\overrightarrow{\mathrm{AB}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{AE}}$,$l=|\overrightarrow{\mathrm{EC}}|$とするとき,以下の問いに答えよ.
(図は省略)

(1)$\mathrm{AB}$と$\mathrm{EC}$が平行であることに注意して,$\overrightarrow{\mathrm{AC}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$l$を用いて表せ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$を$l$を用いて表せ.
(3)$l$を求めよ.
広島工業大学 私立 広島工業大学 2015年 第7問
下図のような$\angle \mathrm{B}=\angle \mathrm{C}={30}^\circ$の二等辺三角形$\mathrm{ABC}$において,$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$,半径を$\sqrt{3}$とする.さらに,弧$\mathrm{AC}$上に$\mathrm{AP}=\mathrm{PC}$となる点$\mathrm{P}$をとる.次の問いに答えよ.
(図は省略)

(1)辺$\mathrm{AB}$,$\mathrm{BC}$の長さを求めよ.
(2)線分$\mathrm{BP}$の長さを求めよ.
(3)$\angle \mathrm{BPC}$および$\mathrm{CP}$の長さを求めよ.
(4)四角形$\mathrm{ABCP}$の面積を求めよ.
東京理科大学 私立 東京理科大学 2015年 第3問
座標平面上の放物線$\displaystyle C_1:y=2x^2+2x+\frac{1}{2}$と$\displaystyle C_2:y=-2x^2+2x+\frac{3}{2}$に対して次の問いに答えよ.なお,必要なら \ \tbox{\rule[-0.43em]{0pt}{1.6em}\hspace{0.33em} $1$\hspace{0.57em}} $(1)$の結果を使ってもよい.

(1)$C_1$上の点$\displaystyle \mathrm{A}(t,\ 2t^2+2t+\frac{1}{2})$と$C_2$上の点$\displaystyle \mathrm{B}(s,\ -2s^2+2s+\frac{3}{2})$に対し,$C_1$の点$\mathrm{A}$における接線の傾きと$C_2$の点$\mathrm{B}$における接線の傾きが等しくなるための必要十分条件を$t$と$s$の式で表せ.
(2)$(1)$の条件を満たすようなどんな実数$t,\ s$に対しても,直線$\mathrm{AB}$はある共通の点$\mathrm{M}$を通る.$\mathrm{M}$の座標を求めよ.
(3)$\mathrm{M}$を$(2)$で求めた点とする.$C_1$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(4)$\mathrm{M}$を$(2)$で求めた点とする.$C_2$とただ一つの共有点をもつような,$\mathrm{M}$を中心とする円に対して,円の半径と共有点の$x$座標を求めよ.
(5)$(1)$の条件を満たすような実数$t,\ s$に対して,線分$\mathrm{AB}$の長さがとり得る値の最小値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第1問
次の各問に答えよ.

(1)整式$P(x)$を$(x-1)(x-4)$で割ると余りは$43x-35$であり,$(x-2)(x-3)$で割ると余りは$39x-55$であるという.このとき,$P(x)$を
\[ (x-1)(x-2)(x-3)(x-4) \]
で割ったときの余りを求めよ.
(2)座標平面に$4$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(1,\ -1)$,$\mathrm{C}(-1,\ 1)$,$\mathrm{D}(-1,\ -1)$がある.実数$x$が$0 \leqq x \leqq 1$の範囲にあるとき,$2$点$\mathrm{P}(x,\ 0)$,$\mathrm{Q}(-x,\ 0)$を考える.このとき,$5$本の線分の長さの和
\[ \mathrm{AP}+\mathrm{BP}+\mathrm{PQ}+\mathrm{CQ}+\mathrm{DQ} \]
が最小となるような$x$の値を求めよ.ただし,$x=0$のときは$\mathrm{PQ}=0$とする.
(3)$1$から$10$までの自然数からなる集合$\{1,\ 2,\ \cdots,\ 10\}$の中から異なる$3$つの数を選ぶとする.このとき,選んだ数の和が$3$で割り切れる確率を求めよ.
(4)座標平面において楕円$\displaystyle E:\frac{x^2}{a}+y^2=1$を考える.ただし,$a$は$a>0$をみたす定数とする.楕円$E$上の点$\mathrm{A}(0,\ 1)$を中心とする円$C$が,次の$2$つの条件をみたしているとする.

(i) 楕円$E$は円$C$とその内部に含まれ,$E$と$C$は$2$点$\mathrm{P}$,$\mathrm{Q}$で接する.
(ii) $\triangle \mathrm{APQ}$は正三角形である.

このとき,$a$の値を求めよ.
早稲田大学 私立 早稲田大学 2015年 第2問
$3$種類の記号$a,\ b,\ c$から重複を許して$n$個を選び,それらを一列に並べて得られる長さ$n$の記号列を考える.このような記号列のなかで,$a$がちょうど偶数個含まれるようなものの総数を$g(n)$とする.ただし,$0$個の場合も偶数個とみなす.たとえば,$g(1)=2$,$g(2)=5$である.

(1)自然数$n \geqq 1$に対して$g(n+1)=g(n)+3^n$が成り立つことを示せ.
(2)$g(n)$を求めよ.
(3)一般に,$a$を含む$m$種類の記号から重複を許して$n$個を選び,それらを一列に並べて得られる長さ$n$の記号列を考える.ただし,$m \geqq 2$とする.このような記号列のなかで,$a$がちょうど奇数個含まれるようなものの総数を$k_m(n)$とする.自然数$n \geqq 1$に対して,$k_m(n)$を求めよ.
スポンサーリンク

「長さ」とは・・・

 まだこのタグの説明は執筆されていません。